
A FULLY ADAPTIVE, HIGH-ORDER, FAST POISSON SOLVER
FOR COMPLEX TWO-DIMENSIONAL GEOMETRIES∗

DANIEL FORTUNATO† , DAVID B. STEIN‡ , AND ALEX H. BARNETT§

Abstract. We present a new framework for the fast solution of inhomogeneous elliptic boundary
value problems in domains with smooth boundaries. High-order solvers based on adaptive box codes
or the fast Fourier transform can efficiently treat the volumetric inhomogeneity, but require care to
be taken near the boundary to ensure that the volume data is globally smooth. We avoid function
extension or cut-cell quadratures near the boundary by dividing the domain into two regions: a
bulk region away from the boundary that is efficiently treated with a truncated free-space box code,
and a variable-width boundary-conforming strip region that is treated with a spectral collocation
method and accompanying fast direct solver. Particular solutions in each region are then combined
with Laplace layer potentials to yield the global solution. The resulting solver has an optimal
computational complexity of O(N) for an adaptive discretization with N degrees of freedom. With
an efficient two-dimensional (2D) implementation we demonstrate adaptive resolution of volumetric
data, boundary data, and geometric features across a wide range of length scales, to typically 10-digit
accuracy. The cost of all boundary corrections remains small relative to that of the bulk box code.
The extension to 3D is expected to be straightforward in many cases because the strip “thickens” an
existing boundary quadrature.

Key words. fast Poisson solver, adaptivity, inhomogeneous PDE, complex geometry, boundary
integral equation

AMS subject classifications. 65N35, 65N50, 65N38

1. Introduction. Inhomogeneous elliptic partial differential equations (PDEs)
play a central role in many areas of science and engineering, and often arise in
conjunction with boundary conditions on complicated domains. The many fields in
which this occurs include electrostatics in the presence of a space charge, elastostatics
with a body load, steady-state heat or chemical reaction-diffusion equations, and
(in the oscillatory case) acoustics and electromagnetics with a distributed source.
Poisson type boundary value problems (BVPs) also arise as components of more
elaborate solvers, where they may be called a large number of times. One example
is that to solve a nonlinear elliptic BVP a (linear) Poisson solve is needed at each
quasi-Newton iteration [6]. A second broad example area is time-dependent solvers, in
which the inhomogeneity is derived from the solution at previous time steps. Common
applications include: (1) in computational fluid dynamics, the pressure solve that
follows each time step in the velocity formulation for incompressible Navier–Stokes [11]
(reviewed in [30]); (2) in non-Newtonian fluids, internal stresses act as volumetric
source terms which often may combine with advection to generate large gradients
at surfaces [49]; and (3) implicit time stepping a parabolic PDE, such as the heat
or Navier–Stokes equations, using Rothe’s method [41], which demands solvers for
the modified Helmholtz or modified Stokes (i.e., Brinkman) inhomogeneous BVPs,
respectively. In time-dependent applications, the boundary geometry may itself be
evolving.

∗Submitted to the editors January 29, 2025.
Funding: This work was funded by the Simons Foundation.

†Center for Computational Mathematics & Center for Computational Biology, Flatiron Institute,
New York, NY 10010 (dfortunato@flatironinstitute.org).

‡Center for Computational Biology, Flatiron Institute, New York, NY 10010
(dstein@flatironinsitute.org).

§Center for Computational Mathematics, Flatiron Institute, New York, NY 10010 (abar-
nett@flatironinstitute.org).

1

mailto:dfortunato@flatironinstitute.org
mailto:dstein@flatironinsitute.org
mailto:abarnett@flatironinstitute.org
mailto:abarnett@flatironinstitute.org

2 D. FORTUNATO, D. B. STEIN, AND A. H. BARNETT

Let Ω ⊂ R2 be a simply connected domain with smooth boundary Γ = ∂Ω, and let
f(x) for x ∈ Ω and g(x) for x ∈ Γ be smooth functions. The model inhomogeneous
elliptic PDE on Ω is the Poisson equation,

∆u(x) = f(x), x ∈ Ω,(1.1a)

u(x) = g(x), x ∈ Γ.(1.1b)

Note that the technique that we present generalizes straightforwardly to above-
mentioned other PDEs, and to other boundary conditions.

Many techniques exist to discretize and solve inhomogeneous elliptic BVPs on
complex geometries. Perhaps most ubiquitous are methods that operate on an un-
structured volumetric mesh of the domain interior, such as finite element methods
(FEMs). While they are geometrically flexible, allow for variable coefficients, and
are well supported with software, the size of the resulting linear systems scales with
the number of interior unknowns needed to represent u, which may be huge when f
has fine-scale variations. Furthermore, the linear systems may be ill-conditioned, and
can become more so upon mesh refinement. Despite this, fast iterative methods such
as multigrid [7] and sparse direct methods [12] have made this a popular approach.
However, the cost of meshing the volume, especially to high order, may be prohibitive
in the setting of time-stepping with evolving geometry. This has led to FEMs based
on adaptive refinement of Cartesian meshes with cut cells [42, 43], giving decreased
meshing cost. This extends ideas from immersed interface and level set methods for
regular finite difference grids.

However, in the case of constant coefficients—as in (1.1a) and many of the appli-
cations mentioned above—a potential-theory-based alternative to direct discretization
allows for a much reduced number of unknowns [38,39]. One splits the solution u as
the sum of a particular solution, v, and a homogeneous solution, w, satisfying

(1.2) ∆v(x) = f(x), x ∈ Ω,

and

(1.3)
∆w(x) = 0, x ∈ Ω,

w(x) = g(x)− v(x), x ∈ Γ.

The function u = v + w then satisfies (1.1a) and (1.1b). Since the particular solution
v is far from unique (it need not obey any specific boundary conditions), a numerically
convenient choice can be made so that evaluation of v is fast and stable, as reviewed
shortly.

Once v is evaluated, the homogeneous BVP (1.3) for w must be solved; this is
conveniently done using boundary element or boundary integral methods, needing
only a number of unknowns sufficient to discretize the boundary and its data [35].
This is typically orders of magnitude smaller than the system size needed with FEM.
Iterative solvers such as GMRES converge rapidly when a representation is chosen that
results in a Fredholm second-kind boundary integral equation (BIE), and high-order
discretizations of the boundary integral operators are available [31]. Although the
resulting linear system is dense, matrix-vector products may be performed via, e.g., a
fast multipole method (FMM) [29] for the PDE fundamental solution, resulting in a
solution time linear in the number of boundary unknowns. Subsequent evaluation of w
in the interior may then also exploit an FMM. (Note that in the non-oscillatory case
the homogeneous BVP could also be solved via boundary-concentrated FEM, with a
similar cost scaling [34].)

A FULLY ADAPTIVE, HIGH-ORDER, FAST POISSON SOLVER 3

The evaluation of a particular solution obeying (1.2) is our main topic. There
have been two main prior approaches to this:

1. One idea [1, 8, 38, 39, 46–48] exploits the availability of fast solvers for the
Poisson problem on various simple domains. Commonly this is a uniform grid
on the rectangle, with some simple boundary condition, for which there exist
fast low-order finite-difference solvers via cyclic reduction [9] or the 2D fast
Fourier transform (FFT); note that if the solution is smooth, the latter may
also be used for a spectrally-accurate solution on this uniform grid. If the
complex geometry Ω lives within a simple domain R, then a particular solution
on R—found using such a fast solver—is also a particular solution on Ω. (We
note that fast Poisson solvers on the rectangle have recently been extended
to nonuniform spectral discretizations [22], and to spheres and balls [53,56],
using low-rank alternating direction implicit methods.)

2. Another approach [2, 4, 18, 24, 44] finds a particular solution by convolution of
f with the fundamental solution (free-space Green’s function), the latter being
1
2π log 1

∥x∥ for the 2D Poisson equation. This has the advantage that there

is no linear solve, merely an evaluation of a volume potential. Furthermore,
the discretization of f may be spatially adaptive and thus more efficient
than the above FFT solvers when f has fine-scale features. To evaluate this
convolution in linear time, so-called “box codes” (or “VFMMs” [23]) have
been developed—FMMs specialized to an adaptive quadrature grid living on
a Cartesian quadtree and reaching near-FFT speeds [4, 18,28].

However, in both of the above approaches, the particular solution v needs to be smooth
enough on Ω to achieve the desired order of accuracy in the overall solution u = v + w.
There have also been two major ways to tackle this smoothness requirement:

(a) The classical approach is to discretize the convolution over the domain,
v(x) = −

∫
Ω
Φ(x,y)f(y)dy, where Φ is either the simple-domain or free-

space Green’s function. If done accurately, this generally gives v as smooth in
Ω as the solution u (see Remark 4.4). However, efficient high-order accurate
approximation of the volume potential on the complex geometry is challenging.
Early work in the uniform finite-difference setting extended f by zero in R \Ω
and then added careful near-boundary node corrections to recover the bulk
convergence order [38,39]. Plain use of a box code does not solve the problem,
since high accuracy would demand an excessive level of adaptive refinement
towards Γ. Recent works evaluate potentials from triangular mesh elements or
irregular cut cells, to medium or high order, by conversion to line integrals [2],
by density interpolation [3], by a two-level Ewald-type heat potential split
and the nonuniform FFT [24], or by so-called anti-Laplacians (Green’s 3rd
identity applied elementwise) [44]. Each of these works uses a fast algorithm
to achieve O(N) scaling in N , the number of discretization nodes. However,
of these four, in their current forms, only the work of Shen and Serkh [44]
could preserve linear scaling in a truly adaptive mesh. Furthermore, the cost
of generating the needed unstructured mesh is notoriously high, especially in
3D.

(b) An alternative is to use function extension (extrapolation outside Ω), meaning

4 D. FORTUNATO, D. B. STEIN, AND A. H. BARNETT

vbulk

Ω ΩB

Ω̃

Γ

Γ̃

vstrip

S

vglue

SΓ̃[σ]−DΓ̃[τ]

w

DΓ[µ]

Fig. 1.1. Overview of our adaptive Poisson solver for a domain Ω. The left three terms comprise
the particular solution v = vbulk + vstrip + vglue, while w is the homogeneous solution. In the left
two panels, blue indicates where the particular solution is evaluated. The grey region (ΩB, which
includes Ω̃) created by well-separated box truncation generates the volume source for vbulk. In the
right two panels, layer densities are shown in red, and evaluated throughout Ω. See Algorithm 1.1.

the construction of a function fe with fe = f in Ω and with some specified
degree of smoothness throughout an enclosing simple domain R. Then v(x) =
−
∫
R
Φ(x,y)fe(y)dy is a particular solution that is smooth in Ω, and whose

evaluation (via either a fast Poisson solver or free-space box code) does not
require refinement near Γ. This has been used with non-adaptive spectral
FFT Poisson solvers via fixed-order immersed-boundary smooth extension
(IBSE) [47, 48], high-order partition-of-unity extension (PUX) using radial
basis functions [1,25,26], or 1D extension along normals [8,16]. In the adaptive
free-space box code setting, C0 extension has been done via an exterior Laplace
BVP solution [4], or at high order by an adaptive variant of PUX [23]. Aside
from the extra computational cost (sometimes involving linear solves), the
idea has two key difficulties: extrapolation is inherently ill-conditioned [14]
(becoming more so the higher the order of smoothness [16, Tbl. 1]), generating
large values outside Ω; and, close-to-touching boundaries Γ may simply not
allow room for a single-valued smooth fe to exist in R \ Ω.

The obstacles inherent in both above approaches to the creation of a smooth v
motivated one of the authors recently to propose “function intension” [46], namely
the smooth roll-off to zero of the source term f in a constant-width boundary strip
region S inside Ω, followed by an FFT-based Poisson solve to generate a v valid only
in Ω \ S; a distinct particular solution is used within S.

In this work, we introduce a high-order linear-scaling Poisson solver for complex
geometries that is fully adaptive in handling both the inhomogeneity and the bound-
ary, while avoiding both volume potentials on the complex geometry and function
extension. Building upon [46], our solver computes a particular solution v using a
simple decomposition of Ω into two regions (see Figure 1.1):

• a bulk region Ω̃ ⊂ Ω with boundary Γ̃ = ∂Ω̃, in which we can use a free-space
box-code to evaluate a particular solution vbulk satisfying

∆vbulk(x) = f(x), x ∈ Ω̃;

• a thin variable-width boundary-fitted strip region S = Ω \ Ω̃, with boundary
Γ ∪ Γ̃, in which we propose high-order curvilinear spectral collocation to
compute a particular solution vstrip satisfying

∆vstrip(x) = f(x), x ∈ S.

A FULLY ADAPTIVE, HIGH-ORDER, FAST POISSON SOLVER 5

As these particular solutions are piecewise defined, they generally possess jumps in
both value and normal derivative across the interface Γ̃. We correct for these jumps
by adding single- and double-layer Laplace potentials vglue along Γ̃ to vbulk and vstrip,
which effectively patch the solutions together1 to recover a globally smooth particular
solution v defined everywhere inside Ω. Unlike in the non-adaptive work [46] where this
partitioning is defined by a constant shift in the local normal direction on Γ, we seek to
handle multiscale geometries and inhomogeneities which may require adaptivity. Thus,
care must be taken to define the curve Γ̃ in a smooth geometry-aware fashion (see
subsection 4.1). This process is outlined in Algorithm 1.1. We also improve upon [46]
by replacing the idea of “function intension” with “well-separated box truncation,”
which is simpler, faster, and amenable to rigorous analysis (see Theorem 1).

The paper is structured as follows. In section 2, we present our standard discretiza-
tion of the boundary Γ into a set of high-order panels. Section 3 briefly describes
how a homogeneous solution w may be computed using standard potential-theoretic
techniques. Subsection 4.1 describes an algorithm to construct a smoothly-defined
strip region in an adaptive fashion. In subsection 4.2, we describe how vbulk can
be efficiently computed as a truncated volume potential and analyze the effect that
truncation has on its smoothness. Subsection 4.3 describes a curvilinear, composite
spectral collocation method to compute vstrip. In subsection 4.4, we show how vbulk
and vstrip may be patched together using layer potentials to yield a globally smooth
particular solution v. We conclude with numerical results and examples in section 5.

Algorithm 1.1 Adaptive solution of interior Dirichlet Poisson problem

Input: Boundary panelization of Γ, inhomogeneity f , Dirichlet data g
Output: Solution u to (1.1a)–(1.1b)

1: Construct fictitious boundary Γ̃ (see subsection 4.1).
2: if f is unresolved on any elements of S then
3: Split the corresponding panels of Γ and goto 1
4: Construct quadtree approximation to f with truncation (see subsection 4.2.1).
5: Compute bulk solution vbulk using a truncated box code (see subsection 4.2.2).
6: Compute strip solution vstrip using spectral collocation (see subsection 4.3).
7: Compute the jumps in value and normal derivative between vbulk and vstrip:

τ = vbulk|Γ̃ − vstrip|Γ̃, σ = ∂nvbulk|Γ̃ − ∂nvstrip|Γ̃.

8: Define a piecewise harmonic function to correct the jumps (see subsection 4.4):

vglue(x) := SΓ̃[σ](x)−DΓ̃[τ](x).

9: Define the particular solution v:

v(x) =

{
vbulk(x) + vglue(x), x ∈ Ω̃,

vstrip(x) + vglue(x), x ∈ S.

10: Compute the homogeneous solution w by solving (1.3) (see section 3).
11: return u = v + w

1Recall that, since the PDE is second-order elliptic, values and normal derivatives are precisely
the Cauchy data needed for smooth matching of solutions [19].

6 D. FORTUNATO, D. B. STEIN, AND A. H. BARNETT

2. Boundary discretization and geometry format. Our Poisson solver needs
as input a description of the smooth domain boundary Γ, a forcing function f : Ω→ R,
and a function g : Γ→ R evaluating the boundary data. We assume that the boundary
is supplied as a set of disjoint panels {γk}npanel

k=1 that resolve the boundary and such
that Γ =

⋃
k γk. Specifically, the kth panel is described by a set of user-supplied nodes

{xj,k}p+1
j=1 , each node being xj,k = (xj,k, yj,k) ∈ R2, that are assumed to be the image

of the standard Gauss–Legendre nodes {tj}p+1
j=1 on [−1, 1] under some smooth map

Λk. Then Λk([−1, 1]) = γk. Such an input format is typical for high-order boundary
integral solvers [57]. We typically choose the order p in the range 10–20.

Remark 2.1. For the purposes of numerical tests we will need to generate resolved
panel discretizations of various boundaries Γ described by an analytic or image-
extracted function. This generation is common in the boundary integral equation
setting and may be automatically performed in an adaptive fashion [57]. In practice,
identifying C with R2, we construct an adaptive panelization from a given parametrized
curve z(t) = x(t) + iy(t) by numerically resolving to a specified tolerance ϵ a set of
monitor functions: the curve z(t), its parametrization “speed” |z′(t)|, and the bending
energy density | Im(z′′(t)/z′(t))|2/|z′(t)| [57]. For each monitor function ζ in this set

and on each panel γk, we compute the 2p+ 1 Legendre coefficients {ζ̂j,k}2p+1
j=1 of ζ on

γk. Then we say that ζ is resolved on γk if

√√√√1

p

∑2p+1
j=p+1 ζ̂

2
j,k∑p

j=1 ζ̂
2
j,k

< ϵ,

i.e., if the tail of the Legendre coefficients has decayed to a relative tolerance of ϵ. If
ζ is not resolved on γk, the panel is further subdivided. If all panels {γk}npanel

k=1 are
resolved to the given ϵ, we say that the panel set resolves Γ. Note that in tests of the
solver, the panel nodes {xj,k}p+1

j=1 for 1 ≤ k ≤ npanel alone are passed in to describe
the geometry; the underlying parametrization is discarded.

For boundary integrals with respect to arc length measure ds we will need a
quadrature weight wj,k for each of the user-supplied set of panel nodes. These weights
are created as follows. Let Dleg be the size-(p+1) square spectral differentiation matrix

that maps values to derivatives on the standard Gauss–Legendre nodes {tj}p+1
j=1 ; the jth

column is given by the derivative of the jth Lagrange basis function evaluated at the
nodes. For the kth panel, stacking its node coordinates as vectors and using MATLAB-
style notation x:,k := {xj,k}p+1

j=1 , the speed ∥x′(t)∥ at the jth node is approximated by

(2.1) sj,k =
√
[(Dlegx:,k)j]2 + [(Dlegy:,k)j]2.

The quadrature weight is then wj,k = Wjsj,k, where Wj are the Gauss–Legendre
weights for [−1, 1]. Then, to high-order accuracy, for any smooth function h : Γ→ R
the change of variables from arc length to t on each panel shows that

(2.2)

∫

Γ

h(x)dsx ≈
npanel∑

k=1

p+1∑

j=1

wj,kh(xj,k).

The solver also needs access to the underlying arc-length parametrization induced
by the set of user-supplied Gauss–Legendre panel nodes. For each panel, say the

A FULLY ADAPTIVE, HIGH-ORDER, FAST POISSON SOLVER 7

kth, this is done as follows. There exists a spectral antidifferentiation matrix Aleg ∈
R(p+1)×(p+1) that maps derivatives to values (up to an overall constant) on the
standard Gauss–Legendre nodes {tj}p+1

j=1 ; this matrix could be constructed via applying
quadrature to Lagrange basis functions, but is more easily found via the pseudoinverse
of Dleg. Then the set aj,k = [Alegs:,k]j are approximate within-panel arc-length
coordinates of the user-supplied nodes. From this, arc-length coordinates a(t) of an
arbitrary t in the panel may be found by polynomial interpolation from the nodes.
In particular, the panel arc length is then ak = a(1) − a(−1). By cumulatively
summing arc lengths from a fixed fiduciary panel endpoint, a global approximate
arc-length parametrization of Γ is then easily built. We will denote this by Λ(a), so
that Λ([0, L]) ≈ Γ to accuracy ϵ, where L =

∑npanel

k=1 ak is the perimeter. Note that we
do not modify the user-supplied nodes (i.e., we do not reparametrize the given nodes
to be Gauss–Legendre in arc length); in subsection 4.1 we will only need the aj,k and
ak computed above.

We further require that panels are sufficiently far away from their non-neighboring
panels. Specifically, the distance between a panel and any non-neighboring panel should
be larger than three times the arc length of the panel [57]. The given panelization is
refined until this criterion is met. We use a k-d tree to efficiently calculate approximate
panel distances [51]. Finally, we require that the user-supplied panelization be level
restricted, so that no two neighboring panels differ in arc length by more than a
factor of two. If the given panelization does not satisfy this criterion, we refine the
panelization until level restriction is satisfied.

3. Potential theory for the homogeneous problem. Our main focus in the
present work is the development of a fast, adaptive, and high-order accurate scheme
to compute a particular solution v to the inhomogeneous PDE in a complex geometry.
However, we also need potential-theoretic techniques for computing the homogeneous
solution w, which are standard and briefly described here. The homogeneous solution
w to the interior Dirichlet problem (1.3) is represented as the double-layer potential
on Γ induced by an unknown density function µ,

(3.1) w(x) = DΓ[µ](x) :=

∫

Γ

∂Φ(x,y)

∂ny
µ(y) dsy,

where Φ(x,y) = 1
2π log 1

∥x−y∥ is the fundamental solution of Laplace’s equation in two

dimensions. Using the jump relations of the double layer potential [35, Thm. 6.18]
leads to a second-kind integral equation for the unknown density µ:

(3.2) −1

2
µ(x) +DΓ[µ](x) = g(x)− v(x), x ∈ Γ.

For a smooth boundary the operator (3.1) has a smooth kernel, so that a plain
Nyström discretization [35, Sec. 12.2; 31] using the quadrature scheme (2.2) is high-
order accurate. The resulting linear system for the values of µ at the set of panel nodes
is well-conditioned. We solve it using GMRES, and accelerate matrix-vector products
at each iteration with the 2D Laplace FMM [29] implemented by FMMLIB2D [27]. For
evaluation of (3.1) close to the boundary, and for evaluation of the blocks of the system
matrix between non-adjacent panels that fall sufficiently close to each other (e.g., in
the case of re-entrant or close-to-touching geometries) we use the specialized panel
quadrature scheme of Helsing and Ojala [32]. In practice, we use the Helsing–Ojala
scheme for any target point or target panel whose distance to the source panel is less
than 1.2 times the length of the source panel.

8 D. FORTUNATO, D. B. STEIN, AND A. H. BARNETT

4. Constructing a particular solution. We now describe our piecewise con-
struction of a particular solution satisfying (1.2). Recall from Algorithm 1.1 that we
form particular solutions in two regions separated by a fictitious curve Γ̃; see Figure 1.1.
We begin with the construction of Γ̃.

4.1. Defining the fictitious curve. Given the curve Γ defined by a panelization
{γk}npanel

k=1 , we aim to compute another panelized curve Γ̃ lying inside Γ. The region

between Γ and Γ̃ then defines the strip region S. To obtain a high-order accurate and
scalable method, there are a number of criteria that Γ̃ should satisfy. The fictitious
curve should be:

• as smooth as the given curve Γ (or high-order accuracy may be lost);

• resolved using O(npanel) panels (or optimal complexity may be lost);

• not too close to Γ (or the box code would have to adapt to overly small scales);
and,

• not too far from Γ (or the strip region would require too many nodes in the
radial direction).

For simplicity, and since it induces curvilinear (as opposed to highly skew) coordinates
in the strip, we use extension in the local normal direction on Γ to define Γ̃. We do not
anticipate that a significant reduction in degrees of freedom is possible with a more
complicated scheme. Thus we define the fictitious curve Γ̃ according to a positive
local width function, h(t) : [0, L] 7→ R+. Let nj,k be the outward pointing unit normal

vector at the jth node of panel k. Then, given a width function h(t), Γ̃ may be defined
via perturbation in the normal direction, with each panel’s nodes given by

(4.1) x̃j,k = xj,k − h(tj,k)nj,k

for j = 1, . . . , p+ 1 and k = 1, . . . , npanel, where tj,k := Ak + aj,k are the arc-length
parameters of the user-supplied nodes. If h is a smooth function (or at least as smooth
as Γ), then the fictitious curve Γ̃ will be as smooth as Γ.

Fig. 4.1. Definition of the fictitious curve Γ̃ by inward normal extension. (Left) On a multiscale
geometry, using a uniform strip width based on the smallest length scale results in an unnecessarily
thin strip where the panel size is large. (Center) Using a width based on the largest length scale leads
to self-intersection at the smallest length scales. (Right) Using a width function h(t) that smoothly
adapts to local panel size gives a strip that correctly resolves all geometric features.

It remains to set up a width function h that satisfies the above criteria. Figure 4.1
depicts the effects that different choices of h can have on an adaptive geometry.
Assuming that the given panelization correctly resolves all multiscale features of Γ, and

A FULLY ADAPTIVE, HIGH-ORDER, FAST POISSON SOLVER 9

has been post-processed so that all non-neighboring panels are sufficiently separated,
these criteria suggest that h should be proportional to the local panel size.

To define a suitable width function h, we begin with a crude, piecewise linear
interpolation of local panel size. Let ak be the arc length of panel k, constructed as in
section 2, and define the panel endpoints Ak :=

∑k−1
k′=1 ak′ so that Λ([Ak, Ak+1]) = γk.

Define the local linear functions, hlin
k (t) = ak +

ak+1−ak

ak
(t− Ak). Then our starting

point for a width function that adapts to local panel size is given by piecewise
linear interpolation, i.e., h(t) = hlin

k (t) for t ∈ [Ak, Ak+1] and k = 1, . . . , npanel.
See Figure 4.2(b). (Note that, as written, the value at the endpoint h(Ak) = ak
matches the panel size to its right rather than left; in practice, once Ak are computed,
we then replace ak with a local average of the panel sizes from the 2K neighboring
panels centered on Ak, for some parameter 1 ≤ K ≤ 5.) However, this h(t) is
continuous but not generally C1, due to kinks at endpoints. A rounded approximation
to the kink occurring between panels γk−1 and γk at the point Ak can be constructed
as

hround
k (t) = ak + ak−ak−1

ak−1
(t−Ak) +

(
ak+1−ak

ak
− ak−ak−1

ak−1

)
rk(t−Ak),

where the middle term sets the slope for t < Ak and the last term smoothly adjusts
this slope to that of hlin

k when t > Ak. Here rk is a “softplus” (or “smooth ReLU”)
function with panel-dependent length scale 1/βk,

rk(t) =
1
βk

log
(
1 + eβkt

)
,

which blends from rk(t) ≈ 0, when t ≪ −1/βk, to rk(t) ≈ t, when t ≫ 1/βk. For a
length scale commensurate with local panel size, we choose βk = 2/(ak−1 + ak).

We then combine the “inner” rounded approximations to each kink into smooth
functions defined on each panel, subtracting off the “outer” expansion hlin in the
manner of matched asymptotics [36, §3.3.3]. Specifically, on each panel γk we add
together the rounded approximations from a small set of 2K neighboring panels,
{γk−K , . . . , γk−1, γk+1, . . . , γk+K}, so that

hneigh
k (t) = hround

k+K+1(t) +

k+K∑

j=k−K

(
hround
j (t)− hlin

j (t)
)
.

In practice, we choose 1 ≤ K ≤ 5. The function hneigh
k (t) is locally a smooth function

on panel γk and its adjacent 2K neighbors.
Finally, in order to arrive at a width function h(t) that is globally smooth across all

panels, we blend together the functions {hneigh
j (t)}k+K

j=k−K on panel γk using a partition
of unity, yielding

(4.2) h(t) =

k+K∑

j=k−K

ŵj(t)h
neigh
j (t), t ∈ [Ak, Ak+1],

with normalized blending functions ŵk(t) = wk(t)/
∑k+K

j=k−K wj(t), wk(t) = ρc(
t−Ak

δ),
and bump function ρc(t) taken to be the prolate spheroidal wavefunction of order zero
and bandwidth c [45], implemented by pswf.m in Chebfun [15]. We typically choose
δ = ak−1+ak

8 and c = 30. It is (4.2) that is used as h(t) in (4.1).

10 D. FORTUNATO, D. B. STEIN, AND A. H. BARNETT

<latexit sha1_base64="h/om3fYR6i1vvAGHWoH5Oo6bKm0=">AAACH3icbVDLTgJBEJxVUcQX6NHLRGKCF7JLFORG9OIRE3kksCGzQwMTZmY3M7MYstlf8KpXv8ab8crfuDxMRKykk0pVd7q7vIAzbWx7Zm1t76R299L7mYPDo+OTbO60qf1QUWhQn/uq7RENnEloGGY4tAMFRHgcWt74fu63JqA08+WTmQbgCjKUbMAoMXNpVDBXvWzeLtoL4E3irEgerVDv5axUt+/TUIA0lBOtO44dGDciyjDKIc50Qw0BoWMyhE5CJRGg3WhxbIwvE6WPB75KShq8UH9PRERoPRVe0imIGem/3lz8z+uEZnDrRkwGoQFJl4sGIcfGx/PPcZ8poIZPE0KoYsmtmI6IItQk+WTW1ngieUKBhGfqC0FkP+pOgMYdx42irieivBPHcWYRXLVyU6qW8Sb5Ca5ZKjrlYvnxOl+7W0WYRufoAhWQgyqohh5QHTUQRSP0gl7Rm/VufVif1teydctazZyhNVizbzLOoho=</latexit>

h(t)

<latexit sha1_base64="FieVDRFHJRZ2cf2QJxdgAVH+CY0=">AAACHHicbVDLSgNBEJyNxkd8JXr0MhgET2E3aGJuQS8eDRgVkkVmZ3uTITOzy8xsJCz7BV716td4E6+Cf+PkIfgqaCiquunuChLOtHHdD6ewtFxcWV1bL21sbm3vlCu71zpOFYUujXmsbgOigTMJXcMMh9tEAREBh5tgdD71b8agNIvllZkk4AsykCxilBgrdcxduerW3BnwX+ItSBUtcHlXcYr9MKapAGkoJ1r3PDcxfkaUYZRDXuqnGhJCR2QAPUslEaD9bHZpjg+tEuIoVrakwTP1+0RGhNYTEdhOQcxQ//am4n9eLzXRqZ8xmaQGJJ0vilKOTYynb+OQKaCGTywhVDF7K6ZDogg1NpzSjzWBsE8okHBPYyGIDLP+GGje8/ws6wciq3p5npdmwbWaJ/VWA/8lX8Fd12teo9boHFfbZ4sI19A+OkBHyENN1EYX6BJ1EUWAHtAjenKenRfn1Xmbtxacxcwe+gHn/RODbqFD</latexit>

t

<latexit sha1_base64="h/om3fYR6i1vvAGHWoH5Oo6bKm0=">AAACH3icbVDLTgJBEJxVUcQX6NHLRGKCF7JLFORG9OIRE3kksCGzQwMTZmY3M7MYstlf8KpXv8ab8crfuDxMRKykk0pVd7q7vIAzbWx7Zm1t76R299L7mYPDo+OTbO60qf1QUWhQn/uq7RENnEloGGY4tAMFRHgcWt74fu63JqA08+WTmQbgCjKUbMAoMXNpVDBXvWzeLtoL4E3irEgerVDv5axUt+/TUIA0lBOtO44dGDciyjDKIc50Qw0BoWMyhE5CJRGg3WhxbIwvE6WPB75KShq8UH9PRERoPRVe0imIGem/3lz8z+uEZnDrRkwGoQFJl4sGIcfGx/PPcZ8poIZPE0KoYsmtmI6IItQk+WTW1ngieUKBhGfqC0FkP+pOgMYdx42irieivBPHcWYRXLVyU6qW8Sb5Ca5ZKjrlYvnxOl+7W0WYRufoAhWQgyqohh5QHTUQRSP0gl7Rm/VufVif1teydctazZyhNVizbzLOoho=</latexit>

h(t)
<latexit sha1_base64="h/om3fYR6i1vvAGHWoH5Oo6bKm0=">AAACH3icbVDLTgJBEJxVUcQX6NHLRGKCF7JLFORG9OIRE3kksCGzQwMTZmY3M7MYstlf8KpXv8ab8crfuDxMRKykk0pVd7q7vIAzbWx7Zm1t76R299L7mYPDo+OTbO60qf1QUWhQn/uq7RENnEloGGY4tAMFRHgcWt74fu63JqA08+WTmQbgCjKUbMAoMXNpVDBXvWzeLtoL4E3irEgerVDv5axUt+/TUIA0lBOtO44dGDciyjDKIc50Qw0BoWMyhE5CJRGg3WhxbIwvE6WPB75KShq8UH9PRERoPRVe0imIGem/3lz8z+uEZnDrRkwGoQFJl4sGIcfGx/PPcZ8poIZPE0KoYsmtmI6IItQk+WTW1ngieUKBhGfqC0FkP+pOgMYdx42irieivBPHcWYRXLVyU6qW8Sb5Ca5ZKjrlYvnxOl+7W0WYRufoAhWQgyqohh5QHTUQRSP0gl7Rm/VufVif1teydctazZyhNVizbzLOoho=</latexit>

h(t)

<latexit sha1_base64="FieVDRFHJRZ2cf2QJxdgAVH+CY0=">AAACHHicbVDLSgNBEJyNxkd8JXr0MhgET2E3aGJuQS8eDRgVkkVmZ3uTITOzy8xsJCz7BV716td4E6+Cf+PkIfgqaCiquunuChLOtHHdD6ewtFxcWV1bL21sbm3vlCu71zpOFYUujXmsbgOigTMJXcMMh9tEAREBh5tgdD71b8agNIvllZkk4AsykCxilBgrdcxduerW3BnwX+ItSBUtcHlXcYr9MKapAGkoJ1r3PDcxfkaUYZRDXuqnGhJCR2QAPUslEaD9bHZpjg+tEuIoVrakwTP1+0RGhNYTEdhOQcxQ//am4n9eLzXRqZ8xmaQGJJ0vilKOTYynb+OQKaCGTywhVDF7K6ZDogg1NpzSjzWBsE8okHBPYyGIDLP+GGje8/ws6wciq3p5npdmwbWaJ/VWA/8lX8Fd12teo9boHFfbZ4sI19A+OkBHyENN1EYX6BJ1EUWAHtAjenKenRfn1Xmbtxacxcwe+gHn/RODbqFD</latexit>

t

<latexit sha1_base64="SYDcits339ZTn6045M244OxdBMM=">AAACHHicbVBNS8NAEN2o1Vq/Wj16CQbBU0lEqseiF48t2A9oQ9lspu3S3U3Y3VRKyC/wqld/jTfxKvhv3LY52NYHA4/3ZpiZF8SMKu26P9bW9k5hd6+4Xzo4PDo+KVdO2ypKJIEWiVgkuwFWwKiAlqaaQTeWgHnAoBNMHuZ+ZwpS0Ug86VkMPscjQYeUYG2kph6UHbfqLmBvEi8nDsrRGFSsQj+MSMJBaMKwUj3PjbWfYqkpYZCV+omCGJMJHkHPUIE5KD9dXJrZl0YJ7WEkTQltL9S/EynmSs14YDo51mO17s3F/7xeood3fkpFnGgQZLlomDBbR/b8bTukEohmM0MwkdTcapMxlphoE05pZU3AzRMSBDyTiHMswrQ/BZL1PD9N+wFPHS/LspIJzluPaZO0r6terVpr3jj1+zzCIjpHF+gKeegW1dEjaqAWIgjQC3pFb9a79WF9Wl/L1i0rnzlDK7C+fwFT76DU</latexit>

t

<latexit sha1_base64="9i1zBqgeamCEd0pJFqyMpiTAuXA=">AAACJXicbVBNS8NAEN3Ur1q/Wj16CQZBLyURqR6LXjxWsFVsQtlsp7p0dxN2N9Wy5F941au/xpsInvwrbtoetPpg4PHeDDPz4pRRpX3/0yktLC4tr5RXK2vrG5tb1dp2RyWZJNAmCUvkTYwVMCqgralmcJNKwDxmcB0Pzwv/egRS0URc6XEKEcd3gg4owdpKt+EIiHnMD/Rhr+r5dX8C9y8JZsRDM7R6NWcp7Cck4yA0YVipbuCnOjJYakoY5JUwU5BiMsR30LVUYA4qMpOTc3ffKn13kEhbQrsT9eeEwVypMY9tJ8f6Xs17hfif18304DQyVKSZBkGmiwYZc3XiFv+7fSqBaDa2BBNJ7a0uuccSE21TqvxaE3P7hAQBDyThHIu+KeLKu0FkTBhz4wV5nldscMF8TH9J56geNOqNy2OveTaLsIx20R46QAE6QU10gVqojQgS6Ak9oxfn1Xlz3p2PaWvJmc3soF9wvr4BeWOkiQ==</latexit>

x(t)

(a) (b) (c) (d)

Γ

Γ̃

Fig. 4.2. Schematic for creating a smooth fictitious curve that adapts to local panel size. (a)
The input panelization, given as a set of high-order Gauss–Legendre nodes sampled from the original
curve Γ. (b) A crude piecewise linear width function h(t) is constructed from average local panel
size (black circles). A rounded approximation to each kink is created, with the amount of smoothing
commensurate with the local panel size (colored curves). (c) The rounded approximations are blended
together into a globally smooth width function h(t) using a partition of unity. (d) The original
panelization is perturbed in the normal direction by h(t), yielding a smooth fictitious curve Γ̃ that
adapts to local panel size.

4.2. The bulk problem. With a suitably defined fictitious curve Γ̃ separating
the bulk region from the strip region, we now turn to computing a particular solution
vbulk in the bulk region Ω̃, meaning that it satisfies

(4.3) ∆vbulk(x) = f(x), x ∈ Ω̃.

For this, our procedure is similar to that of a box code (fast evaluation of a volume
potential on a grid adapted to resolve f [4, 17,18,28]), but with a modified criterion
for refinement, as well as for exclusion of well-separated boxes. Its result will be a
vbulk that is a high-order approximation to

(4.4) vbulk(x) = −
∫

ΩB

Φ(x,y) f(y) dy,

where ΩB is some union of boxes such that Ω̃ ⊂ ΩB ⊂ Ω, as sketched by the grey region
with irregular boundary in the left panel of Figure 1.1. The requirement ΩB ⊂ Ω
simply comes from the fact that f is not defined outside Ω, and, for reasons discussed
in the introduction, extending f smoothly outside of Ω has difficulties that we wish to
avoid.

It is clear that (4.4) would satisfy (4.3) for any choice of source domain ΩB ⊂ Ω
that entirely covers Ω̃. However, what is needed is a choice of ΩB that results in
vbulk being smooth on Γ̃ and in Ω̃. This would indeed hold if ΩB = Ω̃, but would
require excessive box refinement around Γ̃ down to the scale of the desired tolerance
ϵ (thus adding O(ϵ−1 log ϵ−1) boxes to resolve the boundary), hence would be very
inefficient. The same would be true at the other extreme case ΩB = Ω, with the
excessive refinement now occurring at Γ. Our choice of ΩB lies between these two
extremes, and is based on selectively truncating boxes in the strip region. Despite
its seemingly awkward shape, we will show that it retains high-order accuracy while
inducing minimal extra box refinement.

Remark 4.1. The known values of f outside Ω̃ may also be used to obtain a globally
smooth function f̃ through multiplication by a high-order smooth blending function
which rolls off to zero in the strip region S, in the style of “function intension” [46].
Since f̃ is now less smooth than f , this would typically require smaller adaptive boxes
in S, and hence would be less efficient than the box truncation that we propose.

A FULLY ADAPTIVE, HIGH-ORDER, FAST POISSON SOLVER 11

4.2.1. Constructing a quadtree approximation to f . The problem defines
the domain Ω and the source function f available on Ω, and we have at this point
fixed the fictitious split of Ω into bulk Ω̃ and strip S along the curve Γ̃. The user
specifies the order p and tolerance ϵ > 0. We will take p = 16 in all examples. We now
aim to construct a quadtree consisting of a set of boxes {Bk}nbox−1

k=0 , where each box
is either a parent or a leaf, and f is approximated by an order-p polynomial up to a
tolerance ϵ on leaf boxes.

The quadtree construction process starts from a single box B0 ⊃ Ω containing
the entire domain, and proceeds to recursively split a box Bk into four child boxes
according to two criteria:

1. Function resolution. If Bk ⊂ Ω, then f may be fully evaluated on Bk and its
Chebyshev coefficients f̂k

ij computed according to the order-p approximation,

f(x, y) ≈
p+1∑

i=1

p+1∑

j=1

f̂k
ij T

k
j (x)T

k
i (y), (x, y) ∈ Bk,

where T k
j is the jth Chebyshev polynomial of the first kind scaled to the

domain of box Bk. If the coefficients of f on Bk do not decay below the given
tolerance ϵ, then Bk is marked for refinement. If Bk is entirely outside of Ω, it
is discarded and does not contribute. However, if only part of Bk falls outside
Ω (i.e., the boundary Γ cuts the box), then extending f by zero outside Ω will
cause its polynomial approximation to fail. This necessitates the use of the
second criterion.

2. Separation from truncation. If Bk intersects Γ, then the corresponding
volume potential computed on Bk will not be an accurate particular solution
even in the part of the box lying in Ω. One simple option is to set the
coefficients f̂k

ij to zero in Bk. But how does this truncation affect the neighbors
of Bk? To examine this, we perform an experiment on a simple domain in
Figure 4.3. Starting from an inhomogeneity f known everywhere inside a
circle, we construct a quadtree which approximates f to high order and zero
any boxes which overlap the outside of the domain (Figure 4.3, top row). We
then compute the volume potential vbulk induced by this truncated data and
evaluate its residual (Figure 4.3, middle row). One might expect that the
truncation generally induces fake corner singularities in the resulting vbulk
which cause large residuals on any adjacent box—and indeed this is what
is seen. Boxes with large residual, as well as those that were cut by Γ, are
marked for refinement. Moving left-to-right across the figure, each column
shows a recomputation after boxes marked for refinement are subdivided. To
examine the global effect, we solve a test problem inside Ω̃ using vbulk as the
particular solution, and measure the error against a known reference solution
(Figure 4.3, bottom row). This shows that the global error in Ω̃ is controlled
by this truncated-neighbor effect. The final quadtree suggests that any box
that is well separated from truncation (i.e., having no truncated neighbors)
will be accurate. Hence, for all boxes in Ω̃ to be accurate, all boxes touching
the strip region S should be refined until their diameter is less than half of
the strip width. This is our second criterion.

A quadtree construction process based on these criteria is given in Algorithm 4.1.
As a consequence of the size-based splitting criterion, all truncation is pushed to the
outer half of the strip S. As a final post-processing step, we perform a 2:1 balance
of the resulting quadtree [13, 37], so that every box is no more than one refinement

12 D. FORTUNATO, D. B. STEIN, AND A. H. BARNETT

level apart from its neighbors. The truncated volume potential is computed using
the box code available in the boxcode2d library [5], which is called by the treefun

package [20].

Remark 4.2. In practice, we choose to utilize the Chebyshev coefficients of f
even on cut boxes (where f is taken to be extended by zero outside Ω), rather than
setting the function to zero uniformly over the entire cut box. Though the resulting
polynomial approximation of f on these cut boxes is unresolved, we have found that
including such cut values of f can increase the overall accuracy by half a digit or more,
by effectively moving the truncation location slightly further from Γ̃.

In
h
o
m
o
g
e
n
e
it
y
f

∥∆
v
b
u
lk

−
f
∥ ∞

∥f
∥ ∞

∥u
−

u
r
e
f
∥ ∞

∥u
r
e
f
∥ ∞

Fig. 4.3. Visualization of the effect of truncation when computing a volume potential. (Top row)
An inhomogeneity f known everywhere inside the domain (solid circle) is converted to a quadtree,
with each leaf approximating f to high order. Any boxes overlapping the outside of the domain are
discarded, as we assume f is known only inside the domain. (Middle row) The volume potential
vbulk induced by this truncated data is computed with a box code and the relative error of the residual
is used as an indicator for refinement. Boxes with large residuals are subdivided and solutions are
successively computed as we move column-wise to the right. (Bottom row) To visualize the effect of
truncation on the final solution, a test problem is solved inside the fictitious region (dotted circle)
using vbulk as the particular solution and the computed solution u is compared to a known reference
solution uref. The final quadtree suggests that boxes touching the strip region should be refined until
their diameter is less than half of the strip width.

4.2.2. Smoothness of truncated volume potentials. We now analyze the
effect of truncating the volume potential in terms of the smoothness of the computed
particular solution on each panel of Γ̃. Recall from the introduction that a classical
particular solution using the full solution domain Ω is

(4.5) v(x) = −
∫

Ω

Φ(x,y) f(y) dy.

This is smooth in the interior if f is smooth, as follows from standard elliptic regularity
[19, §6.3.2] since ∆v = f in Ω.

A FULLY ADAPTIVE, HIGH-ORDER, FAST POISSON SOLVER 13

Algorithm 4.1 Adaptive construction of truncated quadtree approximation to f

Input: Inhomogeneity f , boundaries Γ and Γ̃, bounding box B0 ⊃ Ω, tolerance ϵ > 0
Output: Quadtree approximation to f as a set of boxes {Bk}nbox−1

k=0

1: Initialize stack of boxes B ← {B0} and nbox ← 1
2: while B ̸= ∅ do
3: Pop Bk from B
4: Determine where Bk lies in relation to Γ and Γ̃
5: resolved← true

6: ▷ Function resolution criterion
7: Compute Chebyshev coefficients f̂k

ij of f on Bk (with f taken to be extended
by zero outside Ω)

8: if Bk ⊂ Ω and f̂k
ij is not resolved to ϵ then

9: resolved← false

10: ▷Truncation separation criterion
11: if Bk ∩ Ω̃ ̸= ∅ and Bk ∩ R2\Ω ̸= ∅ then
12: resolved← false

13: else if Bk ∩ S ≠ ∅ then
14: Find nodes x ∈ Γ and x̃ ∈ Γ̃ nearest to the center of Bk

15: Compute local strip width s← ∥x− x̃∥2
16: if diagonal length of Bk > s/2 then resolved← false

17: if resolved then
18: Store Bk as a leaf box with Chebyshev coefficients f̂k

ij

19: else
20: Store Bk as a parent box
21: Refine Bk and push children onto B
22: nbox ← nbox + 4

23: return {Bk}nbox−1
k=0

The previous subsection described our method to truncate the volume potential
to give (4.4), produced by limiting the support of the source to ΩB , a union of boxes.
Then the difference from the classical potential (4.5),

ṽ := vbulk − v,

is simply the potential due to the difference f̃ in the source terms, namely the free
space convolution

(4.6) ṽ = −Φ ∗ f̃ , where f̃ := χΩ\ΩB
f,

where χS denotes the characteristic function of a set S, and we note that supp f̃ ⊂
R2\ΩB and ∥f̃∥L1(R2) <∞. Additional cut cells included as per Remark 4.2 change f̃
but do not change the fact that the support lies outside of ΩB. The proof that ṽ is
smooth on Γ̃ will rely entirely on this fact that Γ̃ is well-separated from supp f̃ ; the
roughness of f̃ is not relevant.

Our analysis, being based on spatial well-separation, is of a different flavor from
that of prior work such as [4, Sec. 4], which showed that for f discontinuous in a box

14 D. FORTUNATO, D. B. STEIN, AND A. H. BARNETT

one expects nearly two orders (with respect to the box size) better convergence in v
than in the Chebyshev representation of f .

To state the result we need some definitions. Given ρ > 1, recall (e.g., [55]) the
open Bernstein ellipse for the standard interval [−1, 1],

(4.7) Eρ :=
{
(z + z−1)/2 : z ∈ C, ρ−1 < |z| < ρ

}
.

We now identify R2 with C. We use k = 1, . . . , npanel to index panels. The kth panel
is described by a map or chart Xp : C → C such that Xk([−1, 1]) = γ̃k, and Xk is
one-to-one and analytic in some open neighborhood of [−1, 1]. For any ρ > 1 such
that Eρ lies in this neighborhood, we define the Bernstein mapped ellipse for the panel
γ̃k by

(4.8) Eρ,γ̃k
:= Xk(Eρ).

See Figure 4.4(a). For any function q : γ̃k → R we define its pullback Q such that
Q(t) = q(X(t)) for −1 ≤ t ≤ 1. Then define the degree-n Chebyshev approximation
Qn of any function Q on [−1, 1] as the usual truncation of its Chebyshev expansion
to degree n [55, Ch. 4]. Finally, it is a useful shorthand to refer to the Chebyshev
approximation of a function on γ̃k as the pushforward of the Chebyshev approximation
on [−1, 1] of its pullback, where the pushforward of a function Q simply means Q◦X−1.

The main result shows that, if the source truncation is entirely outside the Bernstein
mapped ellipse for a panel, then ṽ and its first derivatives are analytic on that panel, as
indicated by a specific geometric convergence rate of their Chebyshev approximations.
The latter immediately implies geometric convergence of interpolants or quadrature
on the panel.

Theorem 1. Let ṽ = vbulk − v be the change in particular solution (4.4) from the
classical volume potential (4.5). Fix a fictitious panel k ∈ {1, . . . , npanel}. Let ṽn be
the Chebyshev projection of ṽ on this panel γ̃k, and similarly for ∇ṽn. Let ρ > 1 be
such that the panel map Xk is analytic and one-to-one in Eρ, and Eρ,γ̃k

⊂ ΩB . Then

(4.9) ∥ṽn − ṽ∥∞,γ̃k
= O(ρ−n) and ∥∇ṽn −∇ṽ∥∞,γ̃k

= O(ρ−n), n→∞.

In particular, ṽ and ∇ṽ are real analytic on the fictitious panel.

Combining this theorem with the result that v is itself smooth on Γ̃ (by elliptic
regularity in the interior of Ω), then vbulk is also smooth on each fictitious panel.
This is our main result for the section. It provides theoretical support for the high-
order convergence observed using the induced panelization of Γ̃. Note that high-order
quadtree approximation is also guaranteed, since vbulk, being harmonic in Ω̃, must be
at least as smooth in Ω̃ as on Γ̃.

Remark 4.3. One can lower-bound ρ: the construction of ΩB in the previous
subsection showed that ΩB includes the inner half of the strip. If strip panels are
chosen with a typical 2:1 aspect ratio, then the Bernstein ellipse preimage for [−1, 1]
includes i/2, so that ρ > (1 +

√
5)/2 ≈ 1.618. For the typically used number of

upsampled fictitious panel interpolation nodes n = 24, the factor ρ−n ≈ 10−5, implying
that at least 5 correct digits are expected (ignoring unknown prefactors). This is
rather pessimistic: our results in fact show around 10 correct digits, we believe due
to the use of Remark 4.2. This in effect pushes the source f̃ out to Γ, doubling the
exponential convergence rate.

A FULLY ADAPTIVE, HIGH-ORDER, FAST POISSON SOLVER 15

Proof. We identify R2 with C, and thus write ṽ = ReV for the complex logarithmic
potential

V (x) =
−1
2π

∫

C\ΩB

Ly(x)f̃(y) dy.

Here Ly(x) := log(x− y), but with its branch cut in the x variable chosen (for each
fixed y) to connect y to ∞ while avoiding the panel Bernstein mapped ellipse. Since
there is some nonzero distance between the compact sets supp f̃ and Eρ,γ̃k

, then

Ly(x) is uniformly bounded over y ∈ supp f̃ and x ∈ Eρ,γ̃k
. Combining this with

∥f̃∥L1(R2) < ∞ gives ∥V ∥∞,Eρ,γ̃k
≤ M for some M . Since Ly(·) is analytic in Eρ,γ̃k

,

V is also analytic in that set (see, e.g., [50, Thm. 5.4]). Then Q(t) = V (X(t)), the
pullback of V to the complex t-plane, being the composition of two analytic functions,
is analytic in t ∈ Eρ and bounded by M . Let Qn be the Chebyshev truncation of Q
on [−1, 1]. Then,

∥ṽn − ṽ∥∞,γ̃k
≤ ∥Vn − V ∥∞,γ̃k

= ∥Qn −Q∥∞,[−1,1] ≤
2M

ρ− 1
ρ−n,

where the first inequality follows by taking the real part, and the second inequality
is a standard approximation theory result [55, Thm. 8.2] for functions bounded and
analytic in the Bernstein ellipse Eρ. This concludes the proof for ṽ.

Finally, since V is analytic on the closed set Eρ,γ̃k
then V ′ must also be analytic

and bounded on this set. Using ∇ṽ = Re(V ′, iV ′), we can then apply the above
argument replacing V by V ′, with some other choice for M , to show that the two
components of ∇ṽ obey the same result.

Remark 4.4 (Boundary regularity of classical Newton potential). In the classical
potential-theory approach [38,39], if the homogeneous BVP (1.3) is to have smooth
data (allowing its high-order accurate solution), then the boundary data of the Newton
potential (4.5) generated by f ∈ C∞(Ω) also needs to be smooth (along Γ, since we
know that it can only in general be C1 in the normal direction). The latter is somewhat
of a folk theorem. It certainly requires Γ to be smooth (consider a corner where the
jump in f induces a weak singularity in v|Γ). We do not know of literature stating the
result, but note the following2. The Newton potential v in R2 is equal to the interior
solution (extended by zero outside of Ω) to −∆u = f with u = 0 on Γ, minus the
single-layer potential SΓ[∂nu]. By regularity up to the boundary [19, §6.3.2, Thm. 6],
∂nu ∈ C∞(Γ), and since the single-layer boundary integral operator on a smooth
surface Γ is one order smoothing [40, Thm. 7.2], then v ∈ C∞(Γ). Alternatively, proof
sketches directly tackling (4.5) exist [52] (also see [33] which needs Ω convex).

4.3. The strip problem. The volume potential formulation above yields a
particular solution vbulk valid everywhere inside Ω̃. We now turn to the problem of
constructing a particular solution vstrip in the remaining boundary-fitted region S,
such that

(4.10)
∆vstrip(x) = f(x), x ∈ S,
vstrip(x) = 0, x ∈ Γ ∪ Γ̃.

Note that the region S is thin, as its width was chosen so that the distance between
corresponding nodes on Γ and Γ̃ is on the order of the local panel size. Therefore, we

2The argument is due to Leslie Greengard, personal communication.

16 D. FORTUNATO, D. B. STEIN, AND A. H. BARNETT

<latexit sha1_base64="szqTELtoKlIqWqZuYgGJvGk7JxM=">AAACIXicbVBNSwMxEM2q9aN+Vo9egkXwVHaLtnoretCjgm2F7lKy6bSNJtklySpl2f/gVa/+Gm/iTfwzpu0KVn0w8Hhvhpl5YcyZNq774czNLxQWl5ZXiqtr6xubW6Xtlo4SRaFJIx6pm5Bo4ExC0zDD4SZWQETIoR3enY399j0ozSJ5bUYxBIIMJOszSoyVWv45EYJ0t8puxZ0A/yVeTsoox2W35BT8XkQTAdJQTrTueG5sgpQowyiHrOgnGmJC78gAOpZKIkAH6eTcDO9bpYf7kbIlDZ6oPydSIrQeidB2CmKG+rc3Fv/zOonpHwcpk3FiQNLpon7CsYnw+HfcYwqo4SNLCFXM3orpkChCjU2oOLMmFPYJBRIeaGQTkr3UvweadbwgTf1QpGUvy7LiJLiT+lH1pIb/ku/gWtWKV6vUrg7LjdM8wmW0i/bQAfJQHTXQBbpETUTRLXpET+jZeXFenTfnfdo65+QzO2gGzucXV3CjQA==</latexit>

�

<latexit sha1_base64="KdfeIavMz7Z8Jagn7PWtSZO77v4=">AAACNnicbZDLSiNBFIarHXU03uLMStwUBsGFhO6gcdyJIrhUMCqkm6a6+iQpUpemqtohFM08zWzHra8yG3fDbH0EKzGCtx8Kfv5zDqfOlxWcGRuGf4OZL7Nz818XFmtLyyura/X1b1dGlZpChyqu9E1GDHAmoWOZ5XBTaCAi43CdDU/G9etb0IYpeWlHBSSC9CXrMUqsj9L6xmnqYj1Qu7FlPAcX94kQpEqHVVpvhM1wIvzRRFPTQFOdp+vBXJwrWgqQlnJiTDcKC5s4oi2jHKpaXBooCB2SPnS9lUSASdzkhgpv+yTHPaX9kxZP0tcTjghjRiLznYLYgXlfG4ef1bql7f1IHJNFaUHS50W9kmOr8BgIzpkGavnIG0I183/FdEA0odZjq71Zkwl/hAYJP6nylGTu4lugVTdKnIsz4RpRVVW1CbjDg/3WYRt/NC/grlrNqN1sX+w1jo6nCBfQJtpCOyhCB+gInaFz1EEU/UK/0R90F9wHD8G/4P9z60wwnfmO3ih4fAJWCqvs</latexit>

E⇢,�̃k

<latexit sha1_base64="rnirjHnrH4H4XT5xMTKDUE0tZSM=">AAACLXicbZDLSgMxFIYzar3UW6tLN8EiuCozoq3diW5cKlgtdIaSyZzW0CQzJJlKCfMmbnXr07gQxK2vYVorePsh8POfczgnX5xxpo3vv3hz8wulxaXllfLq2vrGZqW6da3TXFFo05SnqhMTDZxJaBtmOHQyBUTEHG7i4dmkfjMCpVkqr8w4g0iQgWR9RolxUa9SCQ3jCdhwQIQgRW/Yq9T8uj8V/muCmamhmS56Va8UJinNBUhDOdG6G/iZiSxRhlEORTnMNWSEDskAus5KIkBHdnp6gfdckuB+qtyTBk/T7xOWCK3HInadgphb/bs2Cf+rdXPTP44sk1luQNLPRf2cY5PiCQecMAXU8LEzhCrmbsX0lihCjaNV/rEmFu4TCiTc0dRBkokNR0CLbhBZG8bC1oKiKMpTcK3m0UGrgf+aL3DXB/WgUW9cHtZOTmcIl9EO2kX7KEBNdILO0QVqI4pG6B49oEfvyXv2Xr23z9Y5bzazjX7Ie/8A3u2oJQ==</latexit>

�̃k

<latexit sha1_base64="7wG67b5dYZJnNXULCIEL5zV0hjM=">AAACLHicbVDBbhMxEPWmpJQUmoQeuVhElThFuxVN6a0Kl95aJNJGyq4ir3c2tWJ7V/ZsIbL2S7jSa7+GC0Jc+Q6cNEiE8KSRnt6b0cy8tJTCYhh+Dxo7T5q7T/eetfafvzhod7ovr21RGQ4jXsjCjFNmQQoNIxQoYVwaYCqVcJPO3y/9mzswVhT6Iy5KSBSbaZELztBL0047vlQwY9MY4TO6YT3t9MJ+uALdJtGa9MgaV9Nu0IyzglcKNHLJrJ1EYYmJYwYFl1C34spCyficzWDiqWYKbOJWl9f0yCsZzQvjSyNdqX9POKasXajUdyqGt/Zfbyn+z5tUmL9LnNBlhaD546K8khQLuoyBZsIAR7nwhHEj/K2U3zLDOPqwWhtrUuWfMKDhEy+UYjpz8R3wehIlzsWpcr2oruvWKriz05PjswHdJn+Cuz7uR4P+4MPb3vlwHeEeeUVekzckIqfknFyQKzIinFTkC/lK7oOH4FvwI/j52NoI1jOHZAPBr9+5n6eL</latexit>

⌦B

<latexit sha1_base64="W7xpkwZsSW4NukvraARGDTasLew=">AAACKXicbVBNSwMxEM36bf1q9eglWARPZVe0tbeiF28qWBW6q2Sz0xpMskuSrZSw/8OrXv013tSrf8S0VrDqg4HHezPMzIszzrTx/Tdvanpmdm5+YbG0tLyyulaurF/oNFcU2jTlqbqKiQbOJLQNMxyuMgVExBwu47ujoX/ZB6VZKs/NIINIkJ5kXUaJcdJ1aBhPwIYnAnqkuClX/Zo/Av5LgjGpojFObyrebJikNBcgDeVE607gZyayRBlGORSlMNeQEXpHetBxVBIBOrKjswu87ZQEd1PlSho8Un9OWCK0HojYdQpibvVvbyj+53Vy0z2ILJNZbkDSr0XdnGOT4mEGOGEKqOEDRwhVzN2K6S1RhBqXVGliTSzcEwok3NNUCCITG/aBFp0gsjaMha0GRVGURsE1G/u7zTr+S76Du9itBfVa/Wyv2jocR7iANtEW2kEBaqAWOkanqI0oUugBPaIn79l78V6996/WKW88s4Em4H18AoIUpvw=</latexit>

⌦̃
<latexit sha1_base64="8p/aqLrUM0ibW0jKGi2EE1fvZnw=">AAACKXicbZDLSgMxFIYz3q23qks3wSK4KjNFW92JLnRZwarQGSWTOW1Dk8yQZJQS5j3c6tancadufRHTi+Dth8DPf87hnHxxxpk2vv/mTU3PzM7NLyyWlpZXVtfK6xuXOs0VhRZNeaquY6KBMwktwwyH60wBETGHq7h/Mqxf3YHSLJUXZpBBJEhXsg6jxLjoJjSMJ2DDUyIEKW7LFb/qj4T/mmBiKmii5u26NxsmKc0FSEM50bod+JmJLFGGUQ5FKcw1ZIT2SRfazkoiQEd2dHaBd1yS4E6q3JMGj9LvE5YIrQcidp2CmJ7+XRuG/9XauekcRJbJLDcg6XhRJ+fYpHjIACdMATV84AyhirlbMe0RRahxpEo/1sTCfUKBhHuaOkQyseEd0KIdRNaGsbCVoCiK0gjcYWO/dljHf80XuMtaNahX6+d7laPjCcIFtIW20S4KUAMdoTPURC1EkUIP6BE9ec/ei/fqvY9bp7zJzCb6Ie/jE3eQpvY=</latexit>

�̃

<latexit sha1_base64="wCYT7e8iLgRqgRu4wKWsP3yR2sE=">AAACJnicbVDLSgNBEJyNrxif0aOXwSB4CrsBo96CXjxGMCawWcLspGOGzGOZmVXCsp/hVa9+jTcRb36KkxjBGAsaiqpuurvihDNjff/DKywtr6yuFddLG5tb2zu75b1bo1JNoUUVV7oTEwOcSWhZZjl0Eg1ExBza8ehy4rfvQRum5I0dJxAJcifZgFFinRSq1ILGxmqW9HYrftWfAi+SYEYqaIZmr+ytdPuKpgKkpZwYEwZ+YqOMaMsoh7zUTQ0khI7IHYSOSiLARNn05hwfOaWPB0q7khZP1d8TGRHGjEXsOgWxQ/PXm4j/eWFqB2dRxmTiXpP0e9Eg5dgqPAkA95kGavnYEUI1c7diOiSaUJeEKc2tiYV7QoOEB6qEILKfde+B5mEQZVk3FlklyPO8NA3u/PSkdl7Hi+QnuNtaNahX69e1SuNiFmERHaBDdIwCdIoa6Ao1UQtRpNAjekLP3ov36r1579+tBW82s4/m4H1+AQOOpbI=</latexit>

outer strip

<latexit sha1_base64="/kb1wCxAXQWh7BSnd5gzph6GyeQ=">AAACJnicbVDLSgNBEJyNrxif0aOXwSB4CrsBo96CXjxGMCawWcLspGOGzGOZmVXCsp/hVa9+jTcRb36KkxjBGAsaiqpuurvihDNjff/DKywtr6yuFddLG5tb2zu75b1bo1JNoUUVV7oTEwOcSWhZZjl0Eg1ExBza8ehy4rfvQRum5I0dJxAJcifZgFFinRQyKUFjYzVLersVv+pPgRdJMCMVNEOzV/ZWun1FUwHSUk6MCQM/sVFGtGWUQ17qpgYSQkfkDkJHJRFgomx6c46PnNLHA6VdSYun6u+JjAhjxiJ2nYLYofnrTcT/vDC1g7MoYzJJLUj6vWiQcmwVngSA+0wDtXzsCKGauVsxHRJNqHUxlebWxMI9oUHCA1VCENnPuvdA8zCIsqwbi6wS5HlemgZ3fnpSO6/jRfIT3G2tGtSr9etapXExi7CIDtAhOkYBOkUNdIWaqIUoUugRPaFn78V79d689+/Wgjeb2Udz8D6/AOIspZ8=</latexit>

inner strip

<latexit sha1_base64="qV+fAZgompuNj3GJwqgcKSmf62U=">AAACJHicbVDLSgNBEJz1GeMr0aOXwSB4CrsBE3MLevGoYHyQLNI76cTBmdllZjYSlv0Kr3r1a7yJBy9+i5MYwagFDUVVN91dUSK4sb7/7s3NLywuLRdWiqtr6xubpfLWhYlTzbDNYhHrqwgMCq6wbbkVeJVoBBkJvIzujsf+5RC14bE6t6MEQwkDxfucgXXSdQIKBZWQ3JQqftWfgP4lwZRUyBSnN2VvsduLWSpRWSbAmE7gJzbMQFvOBObFbmowAXYHA+w4qkCiCbPJxTndc0qP9mPtSlk6UX9OZCCNGcnIdUqwt+a3Nxb/8zqp7R+GGVdJalGxr0X9VFAb0/H7tMc1MitGjgDT3N1K2S1oYNaFVJxZE0n3hEaF9yyWElQv6w6R5Z0gzLJuJLNKkOd5cRJcs3FQa9bpX/Id3EWtGtSr9bNapXU0jbBAdsgu2ScBaZAWOSGnpE0YkeSBPJIn79l78V69t6/WOW86s01m4H18AtfPpIs=</latexit>

panel map

<latexit sha1_base64="q9maKv/RsyPX/SNp5YG8MA6bP3o=">AAACInicbVBNSwMxEM2q1Vo/q0cvwSJ4KrtFW3srevGoYK3QXUo2nbahSXZJskoJ+yO86tVf4008Cf4Y01rBrwcDj/dmmJkXp5xp4/tv3sLiUmF5pbhaWlvf2NzaLu9c6yRTFNo04Ym6iYkGziS0DTMcblIFRMQcOvH4bOp3bkFplsgrM0khEmQo2YBRYpzUCWM2HIa2t13xq/4M+C8J5qSC5rjolb1C2E9oJkAayonW3cBPTWSJMoxyyEthpiEldEyG0HVUEgE6srN7c3zglD4eJMqVNHimfp+wRGg9EbHrFMSM9G9vKv7ndTMzOIksk2lmQNLPRYOMY5Pg6fO4zxRQwyeOEKqYuxXTEVGEGhdR6ceaWLgnFEi4o4kQRPZteAs07waRtWEsbCXI87w0C67ZOK416/gv+QruulYN6tX65VGldTqPsIj20D46RAFqoBY6RxeojSgao3v0gB69J+/Ze/FeP1sXvPnMLvoB7/0Dcbyj1w==</latexit>⇢

<latexit sha1_base64="q9maKv/RsyPX/SNp5YG8MA6bP3o=">AAACInicbVBNSwMxEM2q1Vo/q0cvwSJ4KrtFW3srevGoYK3QXUo2nbahSXZJskoJ+yO86tVf4008Cf4Y01rBrwcDj/dmmJkXp5xp4/tv3sLiUmF5pbhaWlvf2NzaLu9c6yRTFNo04Ym6iYkGziS0DTMcblIFRMQcOvH4bOp3bkFplsgrM0khEmQo2YBRYpzUCWM2HIa2t13xq/4M+C8J5qSC5rjolb1C2E9oJkAayonW3cBPTWSJMoxyyEthpiEldEyG0HVUEgE6srN7c3zglD4eJMqVNHimfp+wRGg9EbHrFMSM9G9vKv7ndTMzOIksk2lmQNLPRYOMY5Pg6fO4zxRQwyeOEKqYuxXTEVGEGhdR6ceaWLgnFEi4o4kQRPZteAs07waRtWEsbCXI87w0C67ZOK416/gv+QruulYN6tX65VGldTqPsIj20D46RAFqoBY6RxeojSgao3v0gB69J+/Ze/FeP1sXvPnMLvoB7/0Dcbyj1w==</latexit>⇢

<latexit sha1_base64="nYpmfvGUk7X4r6EHht5E3PemhPY=">AAACIXicbVDLSgNBEJyNrxhfUY9eBoPgKeyKJuYmiuAxgolCdgmzk44ZM49lZlYJy/6DV736Nd7Em/gzTmIEXwUNRVU33V1xwpmxvv/mFWZm5+YXioulpeWV1bXy+kbbqFRTaFHFlb6KiQHOJLQssxyuEg1ExBwu4+HJ2L+8BW2Ykhd2lEAkyLVkfUaJdVL7tBvqgeqWK37VnwD/JcGUVNAUze66Nxf2FE0FSEs5MaYT+ImNMqItoxzyUpgaSAgdkmvoOCqJABNlk3NzvOOUHu4r7UpaPFG/T2REGDMSsesUxA7Mb28s/ud1Uts/jDImk9SCpJ+L+inHVuHx77jHNFDLR44Qqpm7FdMB0YRal1Dpx5pYuCc0SLijSggie1l4CzTvBFGWhbHIKkGe56VJcI36wV6jhv+Sr+Dae9WgVq2d71eOjqcRFtEW2ka7KEB1dITOUBO1EEU36B49oEfvyXv2XrzXz9aCN53ZRD/gvX8AaIOjSg==</latexit>

E⇢

<latexit sha1_base64="I5ir6/vPqmrl2y1TeYlnWYPINj0=">AAACMXicbVBNTxsxFPRSoBC+EuDWi0WEBJdoF9EAN1QuHGnVAFJ2FXmdF7Dij5X9NihY+196ba/9NdwQV/5EnZBKUDqSpdHMe5rnyQspHMbxQzT3YX5h8ePScm1ldW19o97YvHSmtBw63Ehjr3PmQAoNHRQo4bqwwFQu4Sofnk38qxFYJ4z+juMCMsVutBgIzjBIvfp2agqwDI3VTIH/BtUe7vfqzbgVT0Hfk2RGmmSGi14jWkj7hpcKNHLJnOsmcYGZZxYFl1DV0tJBwfiQ3UA30EmWy/z0/IruBqVPB8aGp5FO1dcbninnxioPk4rhrfvXm4j/87olDo4zL3RRImj+EjQoJUVDJ13QvrDAUY4DYdyKcCvlt8wyjqGx2puYXIVPWNBwx41STPd9OgJedZPM+zRXvplUVVWbFndy9PngpE3fk7/FXR60knar/fWwefplVuES+UR2yB5JyBE5JefkgnQIJ/fkB/lJfkW/o4foMXp6GZ2LZjtb5A2i5z/QF6mb</latexit>

Re(t)

<latexit sha1_base64="jvGiKfTeck4iq6s5+hlh66Bb2bY=">AAACMXicbVDLThsxFPXQQiG8EuiuG4sICTbRDKIBdqhs6I5KDSBlRpHHuQErfozsO0HBmn/ptt32a9ghtvwETkil8jiSpaNz7tW5PnkhhcM4vovmPnycX/i0uFRbXlldW683Ns6dKS2HDjfS2MucOZBCQwcFSrgsLDCVS7jIhycT/2IE1gmjf+K4gEyxKy0GgjMMUq/+OTUFWIbGaqbAf1fVDu726s24FU9B35JkRppkhrNeI5pP+4aXCjRyyZzrJnGBmWcWBZdQ1dLSQcH4kF1BN9BJlsv89PyKbgelTwfGhqeRTtX/NzxTzo1VHiYVw2v32puI73ndEgeHmRe6KBE0fw4alJKioZMuaF9Y4CjHgTBuRbiV8mtmGcfQWO1FTK7CJyxouOFGKab7Ph0Br7pJ5n2aK99MqqqqTYs7Ovi6d9Smb8m/4s73Wkm71f6x3zz+NqtwkXwhW2SHJOSAHJNTckY6hJNb8ov8Jn+iv9FddB89PI/ORbOdTfIC0eMTzlKpmg==</latexit>

Im(t)

<latexit sha1_base64="2OKj1AieoOpmrI0yhUXGCpUHrEs=">AAACHXicbVBNSwMxEM2q1Vq/Wj16CRbBi2VXtLW3ohePVawttEvJprMaTLJLkq2UZf+BV736a7yJV/HfmH4IVn0w8Hhvhpl5QcyZNq776SwsLuWWV/KrhbX1jc2tYmn7RkeJotCiEY9UJyAaOJPQMsxw6MQKiAg4tIP787HfHoLSLJLXZhSDL8itZCGjxFjp6tDrF8tuxZ0A/yXejJTRDM1+ycn1BhFNBEhDOdG667mx8VOiDKMcskIv0RATek9uoWupJAK0n05OzfC+VQY4jJQtafBE/TmREqH1SAS2UxBzp397Y/E/r5uY8NRPmYwTA5JOF4UJxybC47/xgCmgho8sIVQxeyumd0QRamw6hbk1gbBPKJDwQCMhiBykvSHQrOv5adoLRFr2siwrTIKr106O6lX8l3wHd3NU8aqV6uVxuXE2izCPdtEeOkAeqqEGukBN1EIUhegRPaFn58V5dd6c92nrgjOb2UFzcD6+AILjoTc=</latexit>�1
<latexit sha1_base64="+Eeh+Wt/y8HaJJajdX9+gmSERNU=">AAACHHicbVDLSgNBEJyNxkd8JXr0MhgET2E3aGJuQS8eDRgVkkVmZ3uTITOzy8xsJCz7BV716td4E6+Cf+PkIfgqaCiquunuChLOtHHdD6ewtFxcWV1bL21sbm3vlCu71zpOFYUujXmsbgOigTMJXcMMh9tEAREBh5tgdD71b8agNIvllZkk4AsykCxilBgrdby7ctWtuTPgv8RbkCpa4PKu4hT7YUxTAdJQTrTueW5i/IwowyiHvNRPNSSEjsgAepZKIkD72ezSHB9aJcRRrGxJg2fq94mMCK0nIrCdgpih/u1Nxf+8XmqiUz9jMkkNSDpfFKUcmxhP38YhU0ANn1hCqGL2VkyHRBFqbDilH2sCYZ9QIOGexkIQGWb9MdC85/lZ1g9EVvXyPC/Ngms1T+qtBv5LvoK7rte8Rq3ROa62zxYRrqF9dICOkIeaqI0u0CXqIooAPaBH9OQ8Oy/Oq/M2by04i5k99APO+ycQRqEA</latexit>

1

<latexit sha1_base64="6KCzRFod1MAPYP2+K3Tp0HFP0Us=">AAACMXicbVDLSgMxFM34tr5adecmWAQ3lpmi1e5ENy5cKFgVOmPJZG41NMkMSUapYf7FrW79Gnfi1p8wrRV8HQgczrmHe3PijDNtfP/FGxufmJyanpktzc0vLC6VK8vnOs0VhRZNeaouY6KBMwktwwyHy0wBETGHi7h3OPAvbkFplsoz088gEuRasi6jxDipU14Nb4Ha8NglElJ0eld2Kyg65apf84fAf0kwIlU0wkmn4k2GSUpzAdJQTrRuB35mIkuUYZRDUQpzDRmhPXINbUclEaAjOzy/wBtOSXA3Ve5Jg4fq94QlQuu+iN2kIOZG//YG4n9eOzfdvcgymeUGJP1c1M05NikedIETpoAa3neEUMXcrZjeEEWocY2VfqyJhfuEAgl3NBWCyMQOiivaQWRtGAtbDYqiKA2La+7u1JsN/Jd8FXderwWNWuN0u7p/MKpwBq2hdbSJArSL9tEROkEtRNE9ekCP6Ml79l68V+/tc3TMG2VW0A947x95+alr</latexit>

⇤�1
k

<latexit sha1_base64="mR9nkel7eBYbyVclEmDGxI7ZNeA=">AAACLHicbVDLSgMxFM34tr5aXboJFsFVmRGtdld048KFgrWFzlAymVsNTTJDkqmUMF/iVrd+jRsRt36Haa3g60DgcM493JsTZ5xp4/sv3szs3PzC4tJyaWV1bX2jXNm81mmuKLRoylPViYkGziS0DDMcOpkCImIO7XhwOvbbQ1CapfLKjDKIBLmRrM8oMU7qlTfCIVAbnrtEQoreoFeu+jV/AvyXBFNSRVNc9CrefJikNBcgDeVE627gZyayRBlGORSlMNeQETogN9B1VBIBOrKTywu865QE91PlnjR4on5PWCK0HonYTQpibvVvbyz+53Vz0z+OLJNZbkDSz0X9nGOT4nENOGEKqOEjRwhVzN2K6S1RhBpXVunHmli4TyiQcEdTIYhM7LizohtE1oaxsNWgKIrSpLjG0eF+o47/kq/irvdrQb1WvzyoNk+mFS6hbbSD9lCAjlATnaEL1EIU5egePaBH78l79l69t8/RGW+a2UI/4L1/ALBZp4U=</latexit>

⇤k

Ek
Ek+1

Ek−1

γk

γ̃k

Γ

Γ̃

nIk

ξ

η

(b)(a)

Fig. 4.4. (a) Zoom near part of the boundary, showing geometry of kth panel γ̃k discretizing the
fictitious curve Γ̃, and its bijection to the standard panel [−1, 1]. The box code accurately computes
the volume potential due to f in ΩB , whose boundary is well separated from Γ̃. Eρ,γ̃k

is the Bernstein
mapped ellipse for the kth panel. (b) The spectral collocation grid in the strip region. Chebyshev nodes
on panels γk and γ̃k are connected to form a curvilinear tensor-product grid on which differential
operators are numerically constructed. Continuity and continuity of the normal derivative is enforced
between elements Ek and its neighbors Ek−1 and Ek+1.

choose to solve in this region using a multidomain spectral collocation method, with
each panel creating an element that spans the entirety of the thickness of S between
Γ and Γ̃. Specifically, let Ek be the region bounded by Γ, Γ̃, and the straight lines
connecting the left and right endpoints of panel γk with the left and right endpoints
of panel γ̃k, respectively. See Figure 4.4(b) for reference. Denote by Ik the interface
between elements Ek and Ek+1, and nIk

the unit normal vector to Ik pointing from Ek
to Ek+1. (As the strip is periodic in the annular direction, we let Inpanel

be the interface
between elements Enpanel

and E1, and nInpanel
its corresponding normal vector). The

multidomain boundary value problem is then formulated as

(4.11)

∆vkstrip(x) = f(x), x ∈ Ek,
vkstrip(x) = 0, x ∈ ∂Ek ∩

(
Γ ∪ Γ̃

)
,

vkstrip(x) = vk+1
strip(x), x ∈ Ik,

vk
strip

∂nIk
(x) =

vk+1
strip

∂nIk
(x), x ∈ Ik,

for k = 1, . . . , npanel, where v
k
strip is the solution on element Ek (with v

npanel+1
strip := v1strip).

We use a spectral collocation method to discretize (4.11). Let Ichebleg be the
(p + 1) × (p + 1) interpolation matrix which maps function values at p + 1 Gauss–
Legendre nodes to function values at p + 1 second-kind Chebyshev nodes [55]. On
panel k, the nodes xcheb

:,k = Ichebleg x:,k are then Chebyshev nodes. Chebyshev nodes

on Γ̃ may be similarly defined. Letting rcheb be the order-p second-kind Chebyshev
nodes on [−1, 1], a curvilinear tensor product grid of nodes Xij,k for element Ek may
be constructed as

Xij,k =

(
1 + rchebi

2

)
x̃cheb
j,k +

(
1− rchebi

2

)
xcheb
j,k .

Let {ξij = (ξij , ηij)}p+1
i,j=1 be the set of tensor-product second-kind Chebyshev nodes

of order p over the reference square [−1, 1]2. Then for each element, the nodes Xij,k

numerically define a mapping from the reference square [−1, 1]2 to Ek. That is, the

A FULLY ADAPTIVE, HIGH-ORDER, FAST POISSON SOLVER 17

coordinate mapping for each element is a function Xk(ξ, η) = (Xk(ξ, η), Yk(ξ, η)) :
[−1, 1]2 → R2 such that Xk(ξij , ηij) = Xij,k for i, j = 1, . . . , p+1. We may numerically
approximate the coordinate mapping through interpolation at the nodes via

Xk(ξ, η) ≈
p+1∑

i=1

p+1∑

j=1

Xij,k ℓj(ξ) ℓi(η), (ξ, η) ∈ [−1, 1]2,

where ℓj is the jth Lagrange polynomial associated with the second-kind Chebyshev
nodes. Partial derivatives of the elemental coordinate maps, ∂Xk/∂ξ and ∂Xk/∂η,
may then be computed through numerical spectral differentiation [54], and derivatives
of the inverse coordinate mappings may be derived via the chain rule,

(4.12)

∂ξ
∂x = 1

Jk

∂Yk

∂η , ∂ξ
∂y = − 1

Jk

∂Xk

∂η ,

∂η
∂x = − 1

Jk

∂Yk

∂ξ , ∂η
∂y = 1

Jk

∂Xk

∂ξ ,

where Jk = ∂Xk

∂ξ
∂Yk

∂η − ∂Xk

∂η
∂Yk

∂ξ is the Jacobian of the coordinate mapping Xk.
The spectral collocation method proceeds by discretizing the differential operator

on each element and enforcing the PDE and boundary conditions on its interior and
boundary nodes, respectively. For each k, denote by vij,k ≈ vkstrip(Xij,k); that is, vij,k
is simply vkstrip sampled on the grid of element Ek. Then we may approximate each
function by

vkstrip(ξ, η) ≈
p+1∑

i=1

p+1∑

j=1

vij,k ℓj(ξ) ℓi(η), (ξ, η) ∈ [−1, 1]2,

for k = 1, . . . , npanel, where we have introduced the slight abuse of notation vkstrip(ξ, η)

:= vkstrip(Xk(ξ, η)). Now, let D ∈ C(p+1)×(p+1) be the one-dimensional spectral
differentiation matrix associated with the order-p second-kind Chebyshev nodes on the
interval [−1, 1] [54], and let I ∈ C(p+1)×(p+1) be the identity matrix. Then Dξ = D⊗ I
and Dη = I ⊗ D are the two-dimensional differentiation matrices in the ξ- and η-
directions on the reference square, of size (p+ 1)2 × (p+ 1)2. Let M [v] ∈ C(p+1)×(p+1)

denote the diagonal multiplication matrix formed by placing the entries of vij along
the diagonal. Using (4.12), one may show that differentiation matrices in the x- and
y-directions are given by

DXk
= M

[
∂ξ
∂x

]
Dξ +M

[
∂η
∂x

]
Dη,

DYk
= M

[
∂ξ
∂y

]
Dξ +M

[
∂η
∂y

]
Dη.

The discrete Laplacian on element Ek is then given by ∆ ≈ (DXk
)2 + (DYk

)2.
As the multidomain formulation only couples elements to their left and right

neighbors, the resulting linear system is block tridiagonal, aside from a corner block
due to the periodicity of the strip region. Therefore, direct matrix inversion via block
banded LU factorization—along with the Woodbury formula to correct for the corner
block—takes only O(p3npanel) operations to compute the strip solutions vkstrip for
k = 1, . . . , npanel.

Remark 4.5. It may happen that f(x) is unresolved on the strip grid induced
by the given panelization of Γ. To handle this case, our solver first checks if f(x) is

18 D. FORTUNATO, D. B. STEIN, AND A. H. BARNETT

resolved on each element of the strip to the given tolerance; if f is unresolved on some
elements, the solver splits the corresponding panels in Γ and the algorithm restarts.
This process is recursive and happens automatically at the start of Algorithm 1.1,
before quadtree construction.

4.4. Patching together vbulk and vstrip. We now have particular solutions in

both regions of Ω: vbulk satisfying ∆vbulk(x) = f(x) for x ∈ Ω̃, and vstrip satisfying
∆vstrip(x) = f(x) for x ∈ S. However, the piecewise function

(4.13) v(x) =

{
vbulk(x), x ∈ Ω̃,

vstrip(x), x ∈ S,

is not a globally smooth particular solution in Ω, since for each y ∈ Γ̃,

lim
x→y+

v(x) ̸= lim
x→y−

v(x) and lim
x→y+

∂nxv(x) ̸= lim
x→y−

∂nxv(x),

where superscripts of − and + denote limits taken from the interior and exterior of
the domain, respectively. That is, the values and normal derivatives of vbulk and vstrip
do not match across the interface Γ̃.

Denote by SΓ̃[σ] and DΓ̃[τ] the Laplace single and double layer potentials induced

by the densities σ and τ , respectively, on the boundary Γ̃, given by

SΓ̃[σ](x) :=
∫

Γ̃

Φ(x,y)σ(y) dy, DΓ̃[τ](x) :=

∫

Γ̃

∂Φ(x,y)

∂ny
τ(y) dy,

Such layer potentials are harmonic functions, satisfying ∆SΓ̃[σ] = 0 and ∆DΓ̃[σ] = 0

in all of R2 \ Γ̃. It can be shown that SΓ̃ and DΓ̃ satisfy the jump relations [35, Ch. 6]

lim
x→y+

SΓ̃[σ](x)− lim
x→y−

SΓ̃[σ](x) = 0,

lim
x→y+

∂nxSΓ̃[σ](x)− lim
x→y−

∂nxSΓ̃[σ](x) = −σ,

and
lim

x→y+
DΓ̃[τ](x)− lim

x→y−
DΓ̃[τ](x) = τ,

lim
x→y+

∂nxDΓ̃[τ](x)− lim
x→y−

∂nxDΓ̃[τ](x) = 0,

for each y ∈ Γ̃. The single layer potential is continuous across its boundary, with a
jump in normal derivative equal to the negative of the given density. Similarly, the
double layer potential has continuous normal derivative across its boundary, with a
jump in value equal to the given density. Thus, we set

τ = vbulk|Γ̃ − vstrip|Γ̃,
σ = ∂nvbulk|Γ̃ − ∂nvstrip|Γ̃,

and define the function

vglue(x) = SΓ̃[σ](x)−DΓ̃[τ](x),

for all x ∈ Ω. Adding this function to the piecewise-defined particular solution above
results in a globally smooth particular solution to (1.1a), given by

(4.14) v(x) =

{
vbulk(x) + vglue(x), x ∈ Ω̃,

vstrip(x) + vglue(x), x ∈ S,

A FULLY ADAPTIVE, HIGH-ORDER, FAST POISSON SOLVER 19

with values on Γ̃ defined by their limit from either side (which are equal, to discretization
accuracy). As the layer potentials in vglue may be rapidly evaluated using the FMM,
the overall particular solution v may be rapidly evaluated at any point x ∈ Ω.

5. Numerical results. We now demonstrate our adaptive Poisson solver on
some challenging geometries, requiring adaptivity both along the boundary to resolve
geometric features and in the bulk to resolve spatial inhomogeneities. All numerical
examples were run in MATLAB R2024b on single core of an M4 Max MacBook Pro
with 128GB of memory. Our code is open source and freely available [21].

5.1. A rounded raindrop. We first demonstrate our adaptive Poisson solver on
a raindrop-shaped geometry shown in Figure 5.1, consisting of 56 panels of order 16.
The corner of the raindrop is rounded to a length scale of 10−3. While the pinched
end of the raindrop-like shape would force a uniform-grid method to over-refine the
largest length scales, our variable-width strip region smoothly captures the transition
in panel size across three orders of magnitude.

We run the solver with a requested tolerance of 10−10. Our test solution consists
of a sum of Gaussians exponentially clustering into the cusp with decreasing variance,
along with the smooth background function 2x cos 3πy added for variation along
the boundary. We analytically compute the inhomogeneity f corresponding to this
solution. The precomputation phase for this domain, which includes constructing the
strip region and building a 16th-order quadtree to satisfy the refinement criterion,
takes 0.3 s. The resulting quadtree possesses 2,965 leaf nodes with 594,944 degrees of
freedom, and computation of vbulk using a 16th-order box code [5] takes 0.06 s. The
strip region contains 56 elements, with each element upsampled slightly to a resolution
of 16× 24 to yield a strip mesh with 21,504 degrees of freedom. Computation of the
strip particular solution, vstrip, takes 0.3 s. The homogeneous solution w is computed
in 0.2 s by solving a boundary integral equation using GMRES, with matrix-vector
products accelerated by the FMM. Evaluating the solution back on all quadtree and
strip nodes using the FMM takes 2.7 s.

1000×

Fig. 5.1. (Left) The raindrop shape is adaptively panelized, with small panels clustering in the
rounded cusp. Black circles correspond to panel endpoints. The strip region (plotted as a dashed
line) conforms to this adaptive panelization. The test solution is also shown and consists of a series
of Gaussians with decreasing variances clustering inside the cusp. (Center) The inhomogeneity
induced by the given solution is adaptively resolved on a 16th-order background quadtree with 594,944
unknowns and truncated according to the strip refinement criterion outlined in subsection 4.2.1.
(Right) The maximum absolute error is around 10−10 over the whole domain.

20 D. FORTUNATO, D. B. STEIN, AND A. H. BARNETT

5.2. Comparison to FFT-based schemes. We now compare our adaptive
scheme against an FFT-based uniform bulk solver. To do this, we define a series of
problems with decreasing length scale η, driven by both geometry and righthand side.
We generalize the raindrop shape from subsection 5.1 by rounding the corner to a
length scale of η. Such a curve is parametrized in C by

z(t) = − 1
4 sin t− i

√
sin2 t

2 + η2, t ∈ [0, 2π].

Its minimum radius of curvature is Rmin = η/4 +O(η2), at t = 0. As in subsection 5.1,
we set the righthand side to a series of Gaussians clustering into the corner with
decreasing variance, with the numerical support of the narrowest Gaussian proportional
to the length scale η.

In Figure 5.2 we vary η from 100 to 10−8 and plot the total runtime and memory
consumption of our adaptive solver applied to each problem with a requested tolerance
of 10−10. For comparison, we also run the 2D FFT (as implemented in MATLAB’s
fft2) on a series of successively refined n× n uniform grids and plot the same, with n
a power of two to allow the fastest FFTs. The length scale parameter η that the n×n
grid for any variety of FFT-based solver would be able to resolve cannot shrink faster
than O(1/n). We choose a specific relation η = 10h, where h = 1/n is the grid spacing;
in other words Rmin = 2.5h. The figure shows the stark contrast between the runtime
or memory use of our adaptive solver versus that of any nonadaptive FFT-based solver:
runtime and memory grow very weakly with 1/η (one expects logarithmically) for
the adaptive case, while they are both O(1/η2) for the FFT. The upshot is that on a
single shared memory node one cannot reach η < 10−4, whereas the adaptive solver
easily reaches η = 10−8 in a few seconds and a few tens of MB of memory. Note that
this Rmin is still about eight times smaller than needed in the FFT spectral solver of
the second author [46], whose Figure 7 shows that Rmin/h ≈ 20 is needed for 10-digit
accuracy. This prefactor would move the red FFT lines to the left, only strengthening
our point.

100 102 104 106 108
10−2

10−1

100

101

102

103

104

1/η

T
im

e
(s
)

100 102 104 106 108
10−2

10−1

100

101

102

103

104

1/η

M
em

or
y
(G

B
)

fft2 Proposed solver

Fig. 5.2. Performance comparison between the 2D FFT (red circles) and our adaptive solver
(blue squares). We benchmark our adaptive solver on a series of teardrop problems with decreasing
length scale η and a requested error tolerance of 10−10, and record runtime and memory consumption
of the entire solver. For comparison, we benchmark the 2D FFT on successively refined uniform grids
using MATLAB’s fft2, using ten gridpoints to resolve η; see subsection 5.2. Dashed lines indicate
predicted values for the FFT. Note that our adaptive solver is solving the full Poisson problem, while
the 2D FFT would only solve the bulk problem.

A FULLY ADAPTIVE, HIGH-ORDER, FAST POISSON SOLVER 21

5.3. A close-to-touching multiscale geometry and inhomogeneity. We
now turn to a more extreme multiscale geometry, with length scales continuously
spanning four orders of magnitude and close-to-touching regions throughout all scales.
This is constructed in C by spectrally-accurate blending of simple sine wave functions,
followed by overall exponentiation [21]. Moreover, we prescribe the inhomogeneity
f to be the polar angle θ = tan−1(y/x) with the branch cut lying between the
“teeth” of the geometry. This choice of f would pose a problem for methods based on
function extension, as the values of f coming from the top and bottom sides conflict.
The geometry and inhomogeneity are depicted in Figure 5.3, alongside an example
16th-order quadtree and the corresponding pointwise error in the computed solution.

10,000×

Fig. 5.3. (Left) A multiscale geometry with length scales spanning four orders of magnitude
and close-to-touching “teeth” is adaptively panelized into 1,970 panels. The test solution is chosen so
that the inhomogeneity is given by the polar angle, with the branch cut taken between the “teeth” of
the domain. (Center) The truncated 16th-order quadtree that resolves the inhomogeneity contains
over 8 million degrees of freedom. (Right) The computed solution is accurate to about 10−10.

To further illustrate the adaptive performance of our solver, we solve a series
of Poisson problems on this multiscale geometry with requested input tolerances
ϵask ∈ {10−3, 10−6, 10−9}, and measure the maximum pointwise error ϵget in the
resulting solution. Table 5.1 shows the results, along with other metrics: the polynomial
degree p ∼ log(1/ϵask) used to discretize the boundary, quadtree, and strip region; the
total number of degrees of freedom N used to represent the solution; the time taken
to set up (Tsetup), compute a particular solution (Tpart), compute a homogeneous
correction (Thomo), and evaluate the solution back on the set of quadtree and strip
nodes (Teval); the total time (Ttotal); and the overall speed of the solver in points per
second.

5.4. A geometry inspired by cell blebbing. We now apply our solver to a
biologically-inspired geometry. Using image processing, we extract the boundary of
a cell membrane undergoing blebbing from an image taken from [10, Fig. 6]. We
then fit a Fourier series to the sampled boundary and smooth it by convolving with a
fixed-width Gaussian. The resulting geometry is shown in Figure 5.4 and possesses
many small folds and thin filaments that would requirement very fine panels everywhere
using a method based on uniform grids. We prescribe the solution inside this geometry
to be 200 randomly placed Gaussians with variances ranging between 1 and 10−5, with

22 D. FORTUNATO, D. B. STEIN, AND A. H. BARNETT

Table 5.1
Performance results for the adaptive Poisson solver for different requested input tolerances ϵask,

applied to the multiscale geometry depicted in Figure 5.3. We report the maximum pointwise error
achieved (ϵget); the polynomial degree used for the boundary, quadtree, and strip discretizations (p);
the total number of degrees of freedom used to represent the solution (N); the time taken to set up the
solver (Tpart); the time taken to compute a particular solution (Tsolve); the time taken to compute the
homogeneous correction (Thomo); the time taken to evaluate the solution back on the set of quadtree
and strip nodes (Teval); the total time (Ttotal); and the speed in points per second (pps). All times
are measured in seconds. Note that we choose p so that p ∼ log(1/ϵask).

ϵask ϵget p N Tsetup Tpart Thomo Teval Ttotal Speed (pps)

10−3 6.6× 10−4 3 1,327,108 0.99 0.97 1.91 8.68 12.55 105,756

10−6 8.2× 10−8 6 4,109,162 1.46 1.46 2.78 21.53 27.23 150,931

10−9 1.8× 10−10 9 8,418,450 2.04 2.19 3.70 41.99 49.92 168,633

the inhomogeneity defined accordingly.
Due to the random placement of the Gaussians, some Gaussians occur very close

to the boundary with length scales much smaller than the boundary panelization.
Thus, this setup tests the case mentioned in Theorem 4.5. The solver automatically
splits the boundary panels where f was unresolved on the strip grid, and restarts; this
process happens a three times, at which point the refined panelization induces a strip
which resolved f everywhere. The resulting 16th-order quadtree to resolve f contains
9.3 million degrees of freedom. The maximum absolute error in the computed solution
is 10−10.

Fig. 5.4. (Left) Computed solution to Poisson’s equation on the bleb geometry, with an
inhomogeneity consisting of 200 randomly placed Gaussians with variances ranging between 1 and
10−5. (Center) The inhomogeneity is adaptively resolved on a 16th-order quadtree with 9.3 million
unknowns. (Right) The maximum absolute error in the computed solution is 10−10.

6. Conclusion. We presented a high-order Poisson solver that is fully adaptive
with respect to both boundary geometry and forcing function. It combines convolution
with the free-space Green’s function on an adaptive quadtree that resolves the forcing
function (“box code”) in the bulk, with a curvilinear spectral solver in a boundary
“strip” region. Layer potentials on the fictitious strip interface repair the Cauchy
matching conditions to give a particular solution for the whole domain. The quadtree
is truncated within the strip region—we prove that this maintains smoothness in
the bulk—preventing the need for over-refinement to resolve the boundary. For this,
adapting the strip width function h(t) smoothly to the local boundary panel size is
crucial. We show how our solver efficiently handles various multiscale geometries,
with features spanning up to 8 orders of magnitude, and compare against FFT-based
uniform solvers (which are impractical for 4 or more orders of magnitude).

A FULLY ADAPTIVE, HIGH-ORDER, FAST POISSON SOLVER 23

We expect the adaptive solver presented here to naturally extend to three-
dimensional problems, as the strip is based on “thickening” an existing boundary
discretization. Defining a smooth fictitious “shell” in 3D from an unstructured high-
order surface triangulation will require partition-of-unity smoothing based on local
coordinate charts, as an arc-length parametrization is unavailable in three dimensions.
We hope to develop such a solver in future work.

Many more extensions of the adaptive Poisson solver presented here are worthy of
exploration. Other inhomogeneous scalar-valued PDEs with known Green’s function,
such as the Helmholtz or screened Poisson equations, may be solved using essentially
the same piecewise representation of the particular solution [46]. Vector-valued PDEs
such as the Stokes equations or elastostatics require further development of a vector-
valued strip solver. On multiply-connected domains, additional single- and double-layer
corrections are needed for each interior boundary. For time-dependent problems with
moving geometries or evolving inhomogeneities (e.g., as may arise in a fluid simulation),
the truncated quadtree from a previous time step could be updated for the next time
step by refining or coarsening only those leaf boxes which overlap the strip, reducing
the setup time needed by the solver.

Acknowledgments. We have benefited from many useful conversations with
Manas Rachh, Charles Epstein, Dhairya Malhotra, Hai Zhu, Leslie Greengard, and
Shidong Jiang. We thank Travis Askham for adding support for arbitrary order
discretizations to the boxcode2d library [5]. The Flatiron Institute is a division of the
Simons Foundation.

REFERENCES

[1] L. af Klinteberg, T. Askham, and M. C. Kropinski, A fast integral equation method for
the two-dimensional Navier-Stokes equations, J. Comput. Phys., 409 (2020), p. 109353,
https://doi.org/10.1016/j.jcp.2020.109353.

[2] T. Anderson, H. Zhu, and S. Veerapaneni, A fast, high-order scheme for evaluating volume
potentials on complex 2D geometries via area-to-line integral conversion and domain
mappings, J. Comput. Phys., 472 (2023), p. 111688, https://doi.org/10.1016/j.jcp.2022.
111688.

[3] T. G. Anderson, M. Bonnet, L. M. Faria, and C. Pérez-Arancibia, Fast, high-order
numerical evaluation of volume potentials via polynomial density interpolation, J. Comput.
Phys., 511 (2024), p. 113091, https://doi.org/10.1016/j.jcp.2024.113091.

[4] T. Askham and A. J. Cerfon, An adaptive fast multipole accelerated Poisson solver for
complex geometries, J. Comput. Phys., 344 (2017), pp. 1–22, https://doi.org/10.1016/j.jcp.
2017.04.063.

[5] T. Askham, F. Ethridge, D. Fortunato, Z. Gimbutas, L. Greengard, M. O’Neil, and
V. Rokhlin, 2025, https://github.com/flatironinstitute/boxcode2d.

[6] K. Böhmer, Numerical Methods for Nonlinear Elliptic Differential Equations: A Synopsis,
Oxford University Press, 10 2010, https://doi.org/10.1093/acprof:oso/9780199577040.001.
0001.

[7] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial, Second Edition,
SIAM, Philadelphia, PA, 2000, https://doi.org/10.1137/1.9780898719505.

[8] O. P. Bruno and J. Paul, Two-dimensional Fourier continuation and applications, SIAM J.
Sci. Comput., 44 (2022), pp. A964–A992, https://doi.org/10.1137/20M1373189.

[9] B. L. Buzbee, G. H. Golub, and C. W. Nielson, On direct methods for solving Poisson’s
equations, SIAM J. Numer. Anal., 7 (1970), pp. 627–656, https://doi.org/10.1137/0707049.

[10] G. T. Charras, A short history of blebbing, J. Microscopy, 231 (2008), pp. 466–478, https:
//doi.org/10.1111/j.1365-2818.2008.02059.x.

[11] A. J. Chorin, The numerical solution of the Navier-Stokes equations for an incompressible
fluid, Bull. Amer. Math. Soc., 73 (1967), pp. 928–931.

[12] T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar, A survey of direct methods for
sparse linear systems, Acta Numer., 25 (2016), pp. 383–566, https://doi.org/10.1017/

https://doi.org/10.1016/j.jcp.2020.109353
https://doi.org/10.1016/j.jcp.2022.111688
https://doi.org/10.1016/j.jcp.2022.111688
https://doi.org/10.1016/j.jcp.2024.113091
https://doi.org/10.1016/j.jcp.2017.04.063
https://doi.org/10.1016/j.jcp.2017.04.063
https://github.com/flatironinstitute/boxcode2d
https://doi.org/10.1093/acprof:oso/9780199577040.001.0001
https://doi.org/10.1093/acprof:oso/9780199577040.001.0001
https://doi.org/10.1137/1.9780898719505
https://doi.org/10.1137/20M1373189
https://doi.org/10.1137/0707049
https://doi.org/10.1111/j.1365-2818.2008.02059.x
https://doi.org/10.1111/j.1365-2818.2008.02059.x
https://doi.org/10.1017/S0962492916000076
https://doi.org/10.1017/S0962492916000076

24 D. FORTUNATO, D. B. STEIN, AND A. H. BARNETT

S0962492916000076.
[13] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational Geometry:

Algorithms and Applications, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, https:
//doi.org/10.1007/978-3-540-77974-2.

[14] L. Demanet and A. Townsend, Stable extrapolation of analytic functions, Found. Comput.
Math., 19 (2019), pp. 297–331.

[15] T. A. Driscoll, N. Hale, and L. N. Trefethen, Chebfun Guide, Pafnuty Publications, 2014,
http://www.chebfun.org/docs/guide/.

[16] C. Epstein and S. Jiang, A stable, efficient scheme for Cn function extensions on smooth
domains in Rd, June 2022, https://arxiv.org/abs/2206.11318.

[17] F. Ethridge, Fast Algorithms for Volume Integrals in Potential Theory, PhD thesis, New York
University, 2000.

[18] F. Ethridge and L. Greengard, A new fast-multipole accelerated Poisson solver in two
dimensions, SIAM J. Sci. Comput., 23 (2001), pp. 741–760, https://doi.org/10.1137/
S1064827500369967.

[19] L. C. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics,
American Mathematical Society, Providence, RI, 1998.

[20] D. Fortunato, 2022, https://github.com/danfortunato/treefun.
[21] D. Fortunato, 2022, https://github.com/danfortunato/fully-adaptive-poisson.
[22] D. Fortunato and A. Townsend, Fast Poisson solvers for spectral methods, IMA J. Numer.

Anal., 40 (2020), pp. 1994–2018, https://doi.org/10.1093/imanum/drz034.
[23] F. Fryklund and L. Greengard, An FMM accelerated Poisson solver for complicated geome-

tries in the plane using function extension, SIAM J. Sci. Comput., 45 (2023), pp. A3001–
A3019, https://doi.org/10.1137/22M153495X.

[24] F. Fryklund, L. Greengard, S. Jiang, and S. Potter, A lightweight, geometrically flexible
fast algorithm for the evaluation of layer and volume potentials, 2024, https://arxiv.org/
abs/2409.11998, https://arxiv.org/abs/2409.11998.

[25] F. Fryklund, M. C. A. Kropinski, and A.-K. Tornberg, An integral equation–based numerical
method for the forced heat equation on complex domains, Adv. Comput. Math., 46 (2020),
p. 69, https://doi.org/10.1007/s10444-020-09804-z.

[26] F. Fryklund, E. Lehto, and A.-K. Tornberg, Partition of unity extension of functions on
complex domains, J. Comput. Phys., 375 (2018), pp. 57–79, https://doi.org/10.1016/j.jcp.
2018.08.012.

[27] Z. Gimbutas and L. Greengard, https://github.com/zgimbutas/fmmlib2d.
[28] L. Greengard and J.-Y. Lee, A direct adaptive Poisson solver of arbitrary order accuracy, J.

Comput. Phys., 125 (1996), pp. 415–424, https://doi.org/10.1006/jcph.1996.0103.
[29] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys.,

73 (1987), pp. 325–348, https://doi.org/10.1016/0021-9991(87)90140-9.
[30] J. Guermond, P. Minev, and J. Shen, An overview of projection methods for incompressible

flows, Comput. Meth. Appl. Mech. Engs., 195 (2006), pp. 6011–6045, https://doi.org/10.
1016/j.cma.2005.10.010.

[31] S. Hao, A. H. Barnett, P. G. Martinsson, and P. Young, High-order accurate methods for
Nyström discretization of integral equations on smooth curves in the plane, Adv. Comput.
Math., 40 (2014), pp. 245–272, https://doi.org/10.1007/s10444-013-9306-3.

[32] J. Helsing and R. Ojala, On the evaluation of layer potentials close to their sources, J.
Comput. Phys., 227 (2008), pp. 2899–2921, https://doi.org/10.1016/j.jcp.2007.11.024.

[33] J. Hu, Y. Huang, and J. Lu, Boundary regularity of Riesz potential, smooth solution to the
chord log-Minkowski problem, 2024, https://arxiv.org/abs/2304.14220, https://arxiv.org/
abs/2304.14220.

[34] B. N. Khoromskij and J. M. Melenk, Boundary concentrated finite element methods, SIAM
J. Numer. Anal., 41 (2003), pp. 1–36, https://doi.org/10.1137/S0036142901391852.

[35] R. Kress, Linear Integral Equations, vol. 82 of Applied Mathematical Sciences, Springer, New
York, NY, 3rd ed. ed., 2014, https://doi.org/10.1007/978-1-4614-9593-2.

[36] D. Logan, Applied Mathematics, Wiley, 4th ed., 2013.
[37] D. Malhotra and G. Biros, Algorithm 967: A distributed-memory fast multipole method for

volume potentials, ACM Trans. Math. Softw., 43 (2016), pp. 17:1–17:27, https://doi.org/10.
1145/2898349.

[38] A. Mayo, The rapid evaluation of volume integrals of potential theory on general regions, J.
Comput. Phys., 100 (1992), pp. 236–245.

[39] A. McKenney, L. Greengard, and A. Mayo, A fast Poisson solver for complex geometries,
J. Comput. Phys., 118 (1995), pp. 348–355, https://doi.org/10.1006/jcph.1995.1104.

[40] W. C. H. McLean, Strongly elliptic systems and boundary integral equations, Cambridge

https://doi.org/10.1017/S0962492916000076
https://doi.org/10.1017/S0962492916000076
https://doi.org/10.1017/S0962492916000076
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2
http://www.chebfun.org/docs/guide/
https://arxiv.org/abs/2206.11318
https://doi.org/10.1137/S1064827500369967
https://doi.org/10.1137/S1064827500369967
https://github.com/danfortunato/treefun
https://github.com/danfortunato/fully-adaptive-poisson
https://doi.org/10.1093/imanum/drz034
https://doi.org/10.1137/22M153495X
https://arxiv.org/abs/2409.11998
https://arxiv.org/abs/2409.11998
https://arxiv.org/abs/2409.11998
https://doi.org/10.1007/s10444-020-09804-z
https://doi.org/10.1016/j.jcp.2018.08.012
https://doi.org/10.1016/j.jcp.2018.08.012
https://github.com/zgimbutas/fmmlib2d
https://doi.org/10.1006/jcph.1996.0103
https://doi.org/10.1016/0021-9991(87)90140-9
https://doi.org/10.1016/j.cma.2005.10.010
https://doi.org/10.1016/j.cma.2005.10.010
https://doi.org/10.1007/s10444-013-9306-3
https://doi.org/10.1016/j.jcp.2007.11.024
https://arxiv.org/abs/2304.14220
https://arxiv.org/abs/2304.14220
https://arxiv.org/abs/2304.14220
https://doi.org/10.1137/S0036142901391852
https://doi.org/10.1007/978-1-4614-9593-2
https://doi.org/10.1145/2898349
https://doi.org/10.1145/2898349
https://doi.org/10.1006/jcph.1995.1104

A FULLY ADAPTIVE, HIGH-ORDER, FAST POISSON SOLVER 25

University Press, 2000.
[41] E. Rothe, Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimension-

aler Randwertaufgaben, Math. Ann., 102 (1930), pp. 650–670, https://doi.org/10.1007/
BF01782368.

[42] R. Saye, Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for
high-order accurate interface dynamics, with applications to surface tension dynamics,
rigid body fluid–structure interaction, and free surface flow: Part I, J. Comput. Phys., 344
(2017), pp. 647–682, https://doi.org/10.1016/j.jcp.2017.04.076.

[43] R. Saye, Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for
high-order accurate interface dynamics, with applications to surface tension dynamics,
rigid body fluid–structure interaction, and free surface flow: Part II, J. Comput. Phys., 344
(2017), pp. 683–723, https://doi.org/10.1016/j.jcp.2017.05.003.

[44] Z. Shen and K. Serkh, Rapid evaluation of Newtonian potentials on planar domains, SIAM J.
Sci. Comput., 46 (2024), pp. A609–A628, https://doi.org/10.1137/22M1526666.

[45] D. Slepian and H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and
uncertainty, I, Bell Syst. Tech. J., 40 (1961), pp. 43–64.

[46] D. B. Stein, Spectrally accurate solutions to inhomogeneous elliptic PDE in smooth geometries
using function intension, J. Comput. Phys., 470 (2022), p. 111594, https://doi.org/10.1016/
j.jcp.2022.111594.

[47] D. B. Stein, R. D. Guy, and B. Thomases, Immersed boundary smooth extension: A high-
order method for solving PDE on arbitrary smooth domains using Fourier spectral methods,
J. Comput. Phys., 304 (2016), pp. 252–274, https://doi.org/10.1016/j.jcp.2015.10.023.

[48] D. B. Stein, R. D. Guy, and B. Thomases, Immersed boundary smooth extension (IBSE): A
high-order method for solving incompressible flows in arbitrary smooth domains, J. Comput.
Phys., 335 (2017), pp. 155–178, https://doi.org/10.1016/j.jcp.2017.01.010.

[49] D. B. Stein, R. D. Guy, and B. Thomases, Convergent solutions of Stokes Oldroyd-B
boundary value problems using the immersed boundary smooth extension (IBSE) method, J.
Non-Newtonian Fluid Mech., 268 (2019), pp. 56–65.

[50] E. M. Stein and R. Shakarchi, Complex Analysis, Princeton Lectures in Analysis, No. 2,
Princeton University Press, 2003.

[51] A. Tagliasacchi, 2017, https://github.com/taiya/kdtree.
[52] T. Tao, G. Metafune, et al., Regularity of Newtonian potential along

smooth boundary, 2023, https://mathoverflow.net/questions/446383/
regularity-of-newtonian-potential-along-smooth-boundary.

[53] A. Townsend, H. Wilber, and G. B. Wright, Computing with functions in spherical
and polar geometries I. The sphere, SIAM J. Sci. Comput., 38 (2016), pp. C403–C425,
https://doi.org/10.1137/15M1045855.

[54] L. N. Trefethen, Spectral Methods in MATLAB, SIAM, Philadelphia, PA, 2000, https:
//doi.org/10.1137/1.9780898719598.

[55] L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, Philadelphia,
PA, 2013, https://doi.org/10.1137/1.9781611975949.

[56] H. Wilber, A. Townsend, and G. B. Wright, Computing with functions in spherical
and polar geometries II. The disk, SIAM J. Sci. Comput., 39 (2017), pp. C238–C262,
https://doi.org/10.1137/16M1070207.

[57] B. Wu, H. Zhu, A. Barnett, and S. Veerapaneni, Solution of Stokes flow in complex
nonsmooth 2D geometries via a linear-scaling high-order adaptive integral equation scheme,
J. Comput. Phys., 410 (2020), p. 109361, https://doi.org/10.1016/j.jcp.2020.109361.

https://doi.org/10.1007/BF01782368
https://doi.org/10.1007/BF01782368
https://doi.org/10.1016/j.jcp.2017.04.076
https://doi.org/10.1016/j.jcp.2017.05.003
https://doi.org/10.1137/22M1526666
https://doi.org/10.1016/j.jcp.2022.111594
https://doi.org/10.1016/j.jcp.2022.111594
https://doi.org/10.1016/j.jcp.2015.10.023
https://doi.org/10.1016/j.jcp.2017.01.010
https://github.com/taiya/kdtree
https://mathoverflow.net/questions/446383/regularity-of-newtonian-potential-along-smooth-boundary
https://mathoverflow.net/questions/446383/regularity-of-newtonian-potential-along-smooth-boundary
https://doi.org/10.1137/15M1045855
https://doi.org/10.1137/1.9780898719598
https://doi.org/10.1137/1.9780898719598
https://doi.org/10.1137/1.9781611975949
https://doi.org/10.1137/16M1070207
https://doi.org/10.1016/j.jcp.2020.109361

	Introduction
	Boundary discretization and geometry format
	Potential theory for the homogeneous problem
	Constructing a particular solution
	Defining the fictitious curve
	The bulk problem
	Constructing a quadtree approximation to f
	Smoothness of truncated volume potentials

	The strip problem
	Patching together vbulk and vstrip

	Numerical results
	A rounded raindrop
	Comparison to FFT-based schemes
	A close-to-touching multiscale geometry and inhomogeneity
	A geometry inspired by cell blebbing

	Conclusion
	References

