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Introduction
Global spectral methods

3 Spectrally accurate convergence to
solution (e.g. exponential)

3 High accuracy
3 Low numerical dissipation and dispersion

High Reynolds number flows
[Dedalus Project, 2019]

High frequency scattering
[Slevinsky & Olver, 2017]

7 Lack geometric flexibility
7 Globalize corner singularities
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Spectral element methods and hp-adaptivity
Theory vs. practice

SEMs combine:
the flexibility of finite element methods
the convergence properties of global spectral methods

h p
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Spectral element methods and hp-adaptivity
Theory vs. practice

SEMs combine:
the flexibility of finite element methods
the convergence properties of global spectral methods

h p

Most SEMs cost O(p6/h2) = O(N p4), so the slider is biased.

“In practice, hp-adaptivity means p . 6.” [Sherwin, 2014]
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Spectral element methods and hp-adaptivity
Theory vs. practice

“As expected, the numerical results indicate that in the case of smooth solutions, one should fix
the mesh and vary the polynomial order according to the desired accuracy (p-convergence).”
[Sherwin, 2014]

“While flow discontinuities are understandably better resolved with h-refinement, it is found that
in regions of smooth flow, p-refinement offers a higher accuracy with the same number of
degrees of freedom.” [Li & Jameson, 2010]

“Within each of these elements the solution is represented by Nth-order polynomials, where
N = 5–15 is most common but N = 1–100 or beyond is feasible.” [Fischer, 2016]
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Spectral element methods and hp-adaptivity
Theory vs. practice

Want to choose hp based on physical considerations, not computational ones.
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Why do spectral methods get a bad rap?
Spectral collocation

Given values on a grid, what are the values of the derivative on that same grid?

x0 xk xn−1

(Chebyshev points)

Dan Fortunato @ Harvard 5/25



Why do spectral methods get a bad rap?
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Given values on a grid, what are the values of the derivative on that same grid?

u(x0)

u(xk )

u(xn−1)

I{u(xj)}
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Why do spectral methods get a bad rap?
Spectral collocation

Given values on a grid, what are the values of the derivative on that same grid?

u′(x0)

u′(xk )

u′(xn−1)

I{u(xj)}

(I{u(xj)})
′

Differentiation {xk} → {xk} is dense:

u′(xk ) = (I{u(xj)})
′(xk )

The derivative at the k -th point depends on the values of u at all points.
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Why do spectral methods get a bad rap?
Spectral collocation

1. Dense matrices
2. Ill-conditioned matrices
3. When has it converged? Tricky.

u′′(x) + cos(x)u(x) = 0

O(n3)
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Spectral methods can be sparse and well-conditioned
Fourier spectral method (for periodic problems)

Idea: Represent u as coefficients of a Fourier series instead of values on a grid.

u(x) =
n−1

∑
k=0

uk eikx

Differentiation
{

eikx}→ {
eikx} is sparse:

d
dx eikx = ikeikx

The classical Fourier spectral method is sparse
and well-conditioned for periodic problems.

u′′(x) + cos(x)u(x) = 0
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Spectral methods can be sparse and well-conditioned
Chebyshev tau method

Idea: Represent u as coefficients of a Chebyshev series.

u(x) =
n−1

∑
k=0

uk Tk (x), Tk (x) = cos(k cos−1 x)

Differentiation {Tk (x)} → {Tk (x)} is dense:

T ′k (x) =

{
2k ∑k−1

j odd Tj(x), k even,

2k ∑k−1
j even Tj(x)− 1, k odd.

The Chebyshev tau method is dense and ill-conditioned.

u′′(x) + cos(x)u(x) = 0
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Spectral methods can be sparse and well-conditioned
Ultraspherical spectral method

Idea: Represent u as coefficients of a Chebyshev series.

u(x) =
n−1

∑
k=0

uk Tk (x), Tk (x) = cos(k cos−1 x)

Remedy: Let differentiation convert to ultraspherical bases.

T ′k (x) = kC(1)
k−1(x), T ′′k (x) = 2kC(2)

k−2(x), T ′′′k (x) = 8kC(3)
k−3(x), . . .

Then differentiation {Tk (x)} → {C(λ)
k (x)} is sparse.
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Spectral methods can be sparse and well-conditioned
Ultraspherical spectral method

Differentiation:

T ′k (x) = kC(1)
k−1(x), D =


0 1

2
3

. . .


Conversion:

Tk (x) = 1
2

(
C(1)

k −C(1)
k−2

)
, S =


1 0 −1

2
1
2 0 −1

2
1
2 0

. . .
. . . . . .


Multiplication:

a(x) ≈
m−1

∑
k=0

ak Tk (x), Tj(x)Tk (x) = 1
2

(
T|j−k | + Tj+k

)
, m-banded operation
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Spectral methods can be sparse and well-conditioned
Ultraspherical spectral method

1. Almost banded matrices
2. Well-conditioned matrices
3. When has it converged? Easy.

u′′(x) + cos(x)u(x) = 0

O(nm2)
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Spectral methods can be sparse and well-conditioned
Ultraspherical spectral method

u′(x) + x3u(x) = 100 sin(20000x2), u(−1) = 0
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The ultraspherical spectral method in 2D
Solving PDEs on rectangles

Solve the elliptic PDE

Lu(x, y) = f(x, y) in [−1, 1]2

u(x, y) = g(x, y) on boundary

where

L =
2

∑
i=0

2−i

∑
j=0

aij(x, y)
∂i+j

∂x i∂y j

≈
K

∑
k=1

(
Ly

k ⊗L
x
k
)

1-D ultraspherical method

Almost banded-block-banded
Woodbury solve: O(n4)

Conditioning: O(n3)
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The ultraspherical spectral method in 2D
Solving PDEs on rectangles

∇2u + 10000 cos2 y(1
2 + sin2 x)u = cos xy, u(·,±1) = u(±1, ·) = 1

Discretization ≈ 1000× 1000
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The ultraspherical spectral method in 2D
Solving PDEs on kites

(x, y) (ξ, η)
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The ultraspherical spectral element method
Two glued squares

Γ

1 2

∇2u1 = f1 ∇2u2 = f2

u1 = u2

∂u1
∂n1

+ ∂u2
∂n2

= 0

n1n2

u1 = g1 u2 = g2
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The ultraspherical spectral element method
Building blocks

1. Solution operator: S ∈ Rn2×4n

I Maps n coefficients of Dirichlet data on each side to n× n coefficients of the solution.

7→

2. Dirichlet-to-Neumann map: DtN ∈ R4n×4n

I Maps n coefficients of Dirichlet data on each side to n coefficients of the normal
derivative of the solution on each side.

7→

= DnS
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The ultraspherical spectral element method
Constructing the solution operator

1. Solution operator: S ∈ Rn2×4n

I Maps n coefficients of Dirichlet data on each side to n× n coefficients of the solution.

7→

univariate Chebyshev coefficients bivariate Chebyshev coefficients

How does the nth Dirichlet coefficient affect the solution?

· · ·

reshape
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The ultraspherical spectral element method
Merging operators

Γ

?

S1, DtN1 S2, DtN2

S1, DtN1 S2, DtN2S12, DtN12

S12 = −
(

DtNΓ,Γ
1 + DtNΓ,Γ

2

)−1
[

DtNΓ,1
1

DtNΓ,2
2

]

DtN12 =

[
DtNΓ,1

1 0

0 DtNΓ,2
2

]
+

[
DtN1,Γ

1

DtN2,Γ
2

]
S12

Recurse!
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The ultraspherical spectral element method
Hierarchical Poincaré–Steklov scheme

A hierarchical variant of the Schur complement method.

Gunnar Martinsson Adrianna Gillman

[Martinsson, 2013]

[Gillman & Martinsson, 2014]

Build element operatorsMerge operators

Solution operators stored in memory!

Inject Dirichlet dataApply merged operators O(p4)O(p3)O(p2 + p log p)

S1, DtN1 S2, DtN2

S3, DtN3 S4, DtN4S3, DtN3 S4, DtN4

S1, DtN1 S2, DtN2

S34, DtN34

S12, DtN12

S1234, DtN1234S1234, DtN1234

S34, DtN34

S12, DtN12

S3, DtN3 S4, DtN4

S1, DtN1 S2, DtN2
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[Martinsson, 2013]

[Gillman & Martinsson, 2014]

Build element operatorsMerge operators

Solution operators stored in memory!

Inject Dirichlet data

Apply merged operators

O(p4)O(p3)

O(p2 + p log p)
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The ultraspherical spectral element method
Hierarchical Poincaré–Steklov scheme

The sparsity of the ultraspherical spectral method allows us to build solution
operators on each leaf in O(p4) instead of O(p6). For N = p2/h2 degrees of
freedom:

The storage complexity scales as O(p3/h2).
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The ultraspherical spectral element method
Timestepping

∂u
∂t

= ∇2u, x in interior

u(x, 0) = f(x), x in interior
u(x, t) = g(x, t), x on boundary

Discretize in time with with an implicit method, e.g., backward Euler. At each
time point we must solve(

I−∆t∇2
)

uk = uk−1, x in interior

uk = gk , x on boundary
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The ultraspherical spectral element method
Timestepping

∂u
∂t

= ∇2u, x in interior

u(x, 0) = f(x), x in interior
u(x, t) = g(x, t), x on boundary

Discretize in time with with an implicit method, e.g., backward Euler. At each
time point we must solve(

I−∆t∇2
)

uk = uk−1, x in interior

uk = gk , x on boundary

construct solution operator once,
apply in O(p2) with downwards pass

Solution operator at top level can be reused for fast implicit solves.
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Demo
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Ongoing work

Benchmarking: rigorous timing tests to determine practicality.

Adaptivity: automatically detect where to refine h and p.

Timestepping: solution operator can be reused for fast implicit solves.

Skinny elements: high accuracy on elements with small aspect ratio.

Parallelizablity: leaf computations decouple.
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Thank you

(Open-source code coming soon.)
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