The ultraspherical spectral element method

Dan Fortunato

Alex Townsend

Nick Hale

Introduction

Global spectral methods
\checkmark Spectrally accurate convergence to solution (e.g. exponential)
\checkmark High accuracy
\checkmark Low numerical dissipation and dispersion

High frequency scattering [Slevinsky \& Olver, 2017]

x Lack geometric flexibility
x Globalize corner singularities

Spectral element methods and hp-adaptivity

Theory vs. practice
SEMs combine:

- the flexibility of finite element methods
- the convergence properties of global spectral methods

$$
h \longrightarrow p
$$

Spectral element methods and hp-adaptivity

Theory vs. practice
SEMs combine:

- the flexibility of finite element methods
- the convergence properties of global spectral methods

Spectral element methods and hp-adaptivity

Theory vs. practice
SEMs combine:

- the flexibility of finite element methods
- the convergence properties of global spectral methods

Spectral element methods and hp-adaptivity

Theory vs. practice
SEMs combine:

- the flexibility of finite element methods
- the convergence properties of global spectral methods

Spectral element methods and hp-adaptivity

Theory vs. practice
SEMs combine:

- the flexibility of finite element methods
- the convergence properties of global spectral methods

Spectral element methods and hp-adaptivity

Theory vs. practice
SEMs combine:

- the flexibility of finite element methods
- the convergence properties of global spectral methods

Most SEMs cost $\mathcal{O}\left(p^{6} / h^{2}\right)=\mathcal{O}\left(N p^{4}\right)$, so the slider is biased.
"In practice, hp-adaptivity means $p \lesssim 6$." [Sherwin, 2014]

Spectral element methods and hp-adaptivity

Theory vs. practice
"As expected, the numerical results indicate that in the case of smooth solutions, one should fix the mesh and vary the polynomial order according to the desired accuracy (p-convergence)." [Sherwin, 2014]
"While flow discontinuities are understandably better resolved with h-refinement, it is found that in regions of smooth flow, p-refinement offers a higher accuracy with the same number of degrees of freedom." [Li \& Jameson, 2010]
"Within each of these elements the solution is represented by Nth-order polynomials, where $N=5-15$ is most common but $N=1-100$ or beyond is feasible." [Fischer, 2016]

Spectral element methods and hp-adaptivity

Theory vs. practice
Want to choose hp based on physical considerations, not computational ones.

Why do spectral methods get a bad rap?

Spectral collocation

Given values on a grid, what are the values of the derivative on that same grid?

Why do spectral methods get a bad rap?

Spectral collocation

Given values on a grid, what are the values of the derivative on that same grid?

Why do spectral methods get a bad rap?

Spectral collocation

Given values on a grid, what are the values of the derivative on that same grid?

Differentiation $\left\{x_{k}\right\} \rightarrow\left\{x_{k}\right\}$ is dense:

$$
u^{\prime}\left(x_{k}\right)=\left(\mathbb{I}_{\left\{u\left(x_{j}\right)\right\}}\right)^{\prime}\left(x_{k}\right)
$$

The derivative at the k-th point depends on the values of u at all points.

Why do spectral methods get a bad rap?

 Spectral collocation1. Dense matrices
2. III-conditioned matrices
3. When has it converged? Tricky.

Why do spectral methods get a bad rap?

Spectral collocation

1. Dense matrices
2. III-conditioned matrices
3. When has it converged? Tricky.
$u^{\prime \prime}(x)+\cos (x) u(x)=0$

$\mathcal{O}\left(n^{3}\right)$

Why do spectral methods get a bad rap?

Spectral collocation

1. Dense matrices
2. III-conditioned matrices
3. When has it converged? Tricky.
$u^{\prime \prime}(x)+\cos (x) u(x)=0$

$\mathcal{O}\left(n^{3}\right)$

Why do spectral methods get a bad rap?

Spectral collocation

1. Dense matrices
2. III-conditioned matrices
3. When has it converged? Tricky.

$$
\mathcal{O}\left(n^{3}\right)
$$

Spectral methods can be sparse and well-conditioned

 Fourier spectral method (for periodic problems)Idea: Represent u as coefficients of a Fourier series instead of values on a grid.

$$
u(x)=\sum_{k=0}^{n-1} u_{k} e^{i k x}
$$

Differentiation $\left\{e^{i k x}\right\} \rightarrow\left\{e^{i k x}\right\}$ is sparse:

$$
\frac{d}{d x} e^{i k x}=i k e^{i k x}
$$

The classical Fourier spectral method is sparse and well-conditioned for periodic problems.

$$
u^{\prime \prime}(x)+\cos (x) u(x)=0
$$

Spectral methods can be sparse and well-conditioned

 Chebyshev tau methodIdea: Represent u as coefficients of a Chebyshev series.

$$
u(x)=\sum_{k=0}^{n-1} u_{k} T_{k}(x), \quad T_{k}(x)=\cos \left(k \cos ^{-1} x\right)
$$

Differentiation $\left\{T_{k}(x)\right\} \rightarrow\left\{T_{k}(x)\right\}$ is dense:

$$
T_{k}^{\prime}(x)= \begin{cases}2 k \sum_{j \text { odd }}^{k-1} T_{j}(x), & k \text { even }, \\ 2 k \sum_{j \text { even }}^{k-1} T_{j}(x)-1, & k \text { odd. }\end{cases}
$$

$$
u^{\prime \prime}(x)+\cos (x) u(x)=0
$$

The Chebyshev tau method is dense and ill-conditioned.

Spectral methods can be sparse and well-conditioned

 Ultraspherical spectral methodIdea: Represent u as coefficients of a Chebyshev series.

$$
u(x)=\sum_{k=0}^{n-1} u_{k} T_{k}(x), \quad T_{k}(x)=\cos \left(k \cos ^{-1} x\right)
$$

Remedy: Let differentiation convert to ultraspherical bases.

$$
T_{k}^{\prime}(x)=k C_{k-1}^{(1)}(x), \quad T_{k}^{\prime \prime}(x)=2 k C_{k-2}^{(2)}(x), \quad T_{k}^{\prime \prime \prime}(x)=8 k C_{k-3}^{(3)}(x), \quad \ldots
$$

Then differentiation $\left\{T_{k}(x)\right\} \rightarrow\left\{C_{k}^{(\lambda)}(x)\right\}$ is sparse.

Spectral methods can be sparse and well-conditioned

 Ulitraspherical spectral methodDifferentiation:

$$
T_{k}^{\prime}(x)=k C_{k-1}^{(1)}(x), \quad \mathcal{D}=\left(\begin{array}{lllll}
0 & 1 & & & \\
& & 2 & & \\
& & 3 & \\
& & & \ddots
\end{array}\right)
$$

Conversion:

$$
T_{k}(x)=\frac{1}{2}\left(C_{k}^{(1)}-C_{k-2}^{(1)}\right), \quad \mathcal{S}=\left(\begin{array}{ccccc}
1 & 0 & -\frac{1}{2} & & \\
& \frac{1}{2} & 0 & -\frac{1}{2} & \\
& & \frac{1}{2} & 0 & \ddots \\
& & & \ddots & \ddots
\end{array}\right)
$$

Multiplication:

$$
a(x) \approx \sum_{k=0}^{m-1} a_{k} T_{k}(x), \quad T_{j}(x) T_{k}(x)=\frac{1}{2}\left(T_{|j-k|}+T_{j+k}\right), \quad m \text {-banded operation }
$$

Spectral methods can be sparse and well-conditioned

 Ultraspherical spectral method
Almost banded matrices

2. Well-conditioned matrices
3. When has it converged? Easy.

Spectral methods can be sparse and well-conditioned

 Ulitraspherical spectral method
1. Almost banded matrices

2. Well-conditioned matrices
3. When has it converged? Easy.

$$
\begin{aligned}
& u^{\prime \prime}(x)+\cos (x) u(x)=0
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{O}\left(n m^{2}\right)
\end{aligned}
$$

Spectral methods can be sparse and well-conditioned

 Ultraspherical spectral method
1. Almost banded matrices

2. Well-conditioned matrices
3. When has it converged? Easy.

Spectral methods can be sparse and well-conditioned

 Ultraspherical spectral method
1. Almost banded matrices

2. Well-conditioned matrices
3. When has it converged? Easy.
$u^{\prime \prime}(x)+\cos (x) u(x)=0$

$\mathcal{O}\left(n m^{2}\right)$

Condition number

Error in solution

Spectral methods can be sparse and well-conditioned

 Ultraspherical spectral method$$
u^{\prime}(x)+x^{3} u(x)=100 \sin \left(20000 x^{2}\right), \quad u(-1)=0
$$

The ultraspherical spectral method in 2D

Solving PDEs on rectangles

Solve the elliptic PDE

$$
\begin{aligned}
\mathcal{L} u(x, y) & =f(x, y) \text { in }[-1,1]^{2} \\
u(x, y) & =g(x, y) \text { on boundary }
\end{aligned}
$$

where

$$
\mathcal{L}=\sum_{i=0}^{2} \sum_{j=0}^{2-i} a_{i j}(x, y) \frac{\partial^{i+j}}{\partial x^{i} \partial y^{j}}
$$

The ultraspherical spectral method in 2D

Solving PDEs on rectangles

Solve the elliptic PDE

$$
\begin{aligned}
\mathcal{L} u(x, y) & =f(x, y) \text { in }[-1,1]^{2} \\
u(x, y) & =g(x, y) \text { on boundary }
\end{aligned}
$$

where

Almost banded-block-banded Woodbury solve: $\mathcal{O}\left(n^{4}\right)$ Conditioning: $\mathcal{O}\left(n^{3}\right)$

The ultraspherical spectral method in 2D

Solving PDEs on rectangles

$$
\nabla^{2} u+10000 \cos ^{2} y\left(\frac{1}{2}+\sin ^{2} x\right) u=\cos x y, \quad u(\cdot, \pm 1)=u(\pm 1, \cdot)=1
$$

Discretization $\approx 1000 \times 1000$

The ultraspherical spectral method in 2D

 Solving PDEs on kites

The ultraspherical spectral method in 2D

 Solving PDEs on kites

The ultraspherical spectral method in 2D

 Solving PDEs on kites

The ultraspherical spectral element method

 Two glued squares

The ultraspherical spectral element method

 Two glued squares

The ultraspherical spectral element method

Building blocks

1. Solution operator: $S \in \mathbb{R}^{n^{2} \times 4 n}$
\Rightarrow Maps n coefficients of Dirichlet data on each side to $n \times n$ coefficients of the solution.

The ultraspherical spectral element method

1. Solution operator: $S \in \mathbb{R}^{n^{2} \times 4 n}$
\Rightarrow Maps n coefficients of Dirichlet data on each side to $n \times n$ coefficients of the solution.

2. Dirichlet-to-Neumann map: $\operatorname{DtN} \in \mathbb{R}^{4 n \times 4 n}$

- Maps n coefficients of Dirichlet data on each side to n coefficients of the normal derivative of the solution on each side.

The ultraspherical spectral element method

1. Solution operator: $S \in \mathbb{R}^{n^{2} \times 4 n}$
\Rightarrow Maps n coefficients of Dirichlet data on each side to $n \times n$ coefficients of the solution.

2. Dirichlet-to-Neumann map: $\operatorname{DtN} \in \mathbb{R}^{4 n \times 4 n}$

- Maps n coefficients of Dirichlet data on each side to n coefficients of the normal derivative of the solution on each side.

The ultraspherical spectral element method

Constructing the solution operator

1. Solution operator: $S \in \mathbb{R}^{n^{2} \times 4 n}$
\Rightarrow Maps n coefficients of Dirichlet data on each side to $n \times n$ coefficients of the solution.

The ultraspherical spectral element method

Constructing the solution operator

1. Solution operator: $S \in \mathbb{R}^{n^{2} \times 4 n}$

- Maps n coefficients of Dirichlet data on each side to $n \times n$ coefficients of the solution.

How does the $n^{\text {th }}$ Dirichlet coefficient affect the solution?

The ultraspherical spectral element method

Constructing the solution operator

1. Solution operator: $S \in \mathbb{R}^{n^{2} \times 4 n}$

- Maps n coefficients of Dirichlet data on each side to $n \times n$ coefficients of the solution.

How does the $n^{\text {th }}$ Dirichlet coefficient affect the solution?

The ultraspherical spectral element method

Constructing the solution operator

1. Solution operator: $S \in \mathbb{R}^{n^{2} \times 4 n}$

- Maps n coefficients of Dirichlet data on each side to $n \times n$ coefficients of the solution.

How does the $n^{\text {th }}$ Dirichlet coefficient affect the solution?

The ultraspherical spectral element method

Constructing the solution operator

1. Solution operator: $S \in \mathbb{R}^{n^{2} \times 4 n}$

- Maps n coefficients of Dirichlet data on each side to $n \times n$ coefficients of the solution.

How does the $n^{\text {th }}$ Dirichlet coefficient affect the solution?

The ultraspherical spectral element method

Constructing the solution operator

1. Solution operator: $S \in \mathbb{R}^{n^{2} \times 4 n}$

- Maps n coefficients of Dirichlet data on each side to $n \times n$ coefficients of the solution.

How does the $n^{\text {th }}$ Dirichlet coefficient affect the solution?

The ultraspherical spectral element method

Constructing the solution operator

1. Solution operator: $S \in \mathbb{R}^{n^{2} \times 4 n}$

- Maps n coefficients of Dirichlet data on each side to $n \times n$ coefficients of the solution.

How does the $n^{\text {th }}$ Dirichlet coefficient affect the solution?

The ultraspherical spectral element method

 Merging operators

$$
\begin{aligned}
S_{12} & =-\left(D t N_{1}^{\Gamma, \Gamma}+D t N_{2}^{\Gamma, \Gamma}\right)^{-1}\left[\begin{array}{l}
D t N_{1}^{\Gamma, 1} \\
D t N_{2}^{\Gamma, 2}
\end{array}\right] \\
D t N_{12} & =\left[\begin{array}{cc}
D t N_{1}^{\Gamma, 1} & 0 \\
0 & D t N_{2}^{\Gamma, 2}
\end{array}\right]+\left[\begin{array}{l}
D t N_{1}^{1, \Gamma} \\
D t N_{2}^{2, \Gamma}
\end{array}\right] S_{12}
\end{aligned}
$$

The ultraspherical spectral element method

 Merging operators

The ultraspherical spectral element method Hierarchical Poincaré-Steklov scheme

A hierarchical variant of the Schur complement method.

[Martinsson, 2013]
[Gillman \& Martinsson, 2014]

The ultraspherical spectral element method Hierarchical Poincaré-Steklov scheme

A hierarchical variant of the Schur complement method.

Build element operators

The ultraspherical spectral element method Hierarchical Poincaré-Steklov scheme

A hierarchical variant of the Schur complement method.

[Martinsson, 2013]
[Gillman \& Martinsson, 2014]
Merge operators

The ultraspherical spectral element method Hierarchical Poincaré-Steklov scheme

A hierarchical variant of the Schur complement method.

[Martinsson, 2013]
[Gillman \& Martinsson, 2014]

Merge operators

The ultraspherical spectral element method Hierarchical Poincaré-Steklov scheme

A hierarchical variant of the Schur complement method.
Merge operators

[Martinsson, 2013]
[Gillman \& Martinsson, 2014]

Solution operators stored in memory!

The ultraspherical spectral element method Hierarchical Poincaré-Steklov scheme

A hierarchical variant of the Schur complement method.

[Martinsson, 2013]
[Gillman \& Martinsson, 2014]

Solution operators stored in memory!

Inject Dirichlet data

The ultraspherical spectral element method Hierarchical Poincaré-Steklov scheme

A hierarchical variant of the Schur complement method.

[Martinsson, 2013]
[Gillman \& Martinsson, 2014]

Solution operators stored in memory!

Apply merged operators $\mathcal{O}\left(p^{2}+p \log p\right)$

The ultraspherical spectral element method Hierarchical Poincaré-Steklov scheme

A hierarchical variant of the Schur complement method.

[Martinsson, 2013]
[Gillman \& Martinsson, 2014]

Solution operators stored in memory!

Apply merged operators $\mathcal{O}\left(p^{2}+p \log p\right)$

The ultraspherical spectral element method Hierarchical Poincaré-Steklov scheme

A hierarchical variant of the Schur complement method.

[Martinsson, 2013]
[Gillman \& Martinsson, 2014]

Solution operators stored in memory!

Apply merged operators $\mathcal{O}\left(p^{2}+p \log p\right)$

The ultraspherical spectral element method Hierarchical Poincaré-Steklov scheme

A hierarchical variant of the Schur complement method.

[Martinsson, 2013]
[Gillman \& Martinsson, 2014]

Solution operators stored in memory!

Apply merged operators $\mathcal{O}\left(p^{2}+p \log p\right)$

The ultraspherical spectral element method

 Hierarchical Poincaré-Steklov schemeThe sparsity of the ultraspherical spectral method allows us to build solution operators on each leaf in $\mathcal{O}\left(p^{4}\right)$ instead of $\mathcal{O}\left(p^{6}\right)$. For $N=p^{2} / h^{2}$ degrees of freedom:

The storage complexity scales as $\mathcal{O}\left(p^{3} / h^{2}\right)$.

The ultraspherical spectral element method

Timestepping

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\nabla^{2} u, & & \boldsymbol{x} \text { in interior } \\
u(\boldsymbol{x}, 0) & =f(\boldsymbol{x}), & & \boldsymbol{x} \text { in interior } \\
u(\boldsymbol{x}, t) & =g(\boldsymbol{x}, t), & & \boldsymbol{x} \text { on boundary }
\end{aligned}
$$

Discretize in time with with an implicit method, e.g., backward Euler. At each time point we must solve

$$
\begin{aligned}
\left(I-\Delta t \nabla^{2}\right) u^{k} & =u^{k-1}, & & \boldsymbol{x} \text { in interior } \\
u^{k} & =g^{k}, & & \boldsymbol{x} \text { on boundary }
\end{aligned}
$$

The ultraspherical spectral element method

Timestepping

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\nabla^{2} u, & & \boldsymbol{x} \text { in interior } \\
u(\boldsymbol{x}, 0) & =f(\boldsymbol{x}), & & \boldsymbol{x} \text { in interior } \\
u(\boldsymbol{x}, t) & =g(\boldsymbol{x}, t), & & \mathbf{x} \text { on boundary }
\end{aligned}
$$

Discretize in time with with an implicit method, e.g., backward Euler. At each time point we must solve

$$
\begin{aligned}
& \qquad \qquad \begin{aligned}
\left(I-\Delta t \nabla^{2}\right) u^{k}=u^{k-1}, & \boldsymbol{x} \text { in interior } \\
u^{k}=g^{k}, & \boldsymbol{x} \text { on boundary }
\end{aligned} \\
& \text { construct solution operator once, } \\
& \text { apply in } \mathcal{O}\left(p^{2}\right) \text { with downwards pass }
\end{aligned}
$$

Solution operator at top level can be reused for fast implicit solves.

Demo

Ongoing work

- Benchmarking: rigorous timing tests to determine practicality.
- Adaptivity: automatically detect where to refine h and p.
- Timestepping: solution operator can be reused for fast implicit solves.
- Skinny elements: high accuracy on elements with small aspect ratio.
- Parallelizablity: leaf computations decouple.

Thank you

(Open-source code coming soon.)

