The ultraspherical spectral element method Dan Fortunato

Alex Townsend

Nick Hale

Introduction Global spectral methods

- Spectrally accurate convergence to solution (e.g. exponential)
- ✓ High accuracy
- $\checkmark\,$ Low numerical dissipation and dispersion

- X Lack geometric flexibility
- X Globalize corner singularities

- the flexibility of finite element methods
- the convergence properties of global spectral methods

- the flexibility of finite element methods
- the convergence properties of global spectral methods

- the flexibility of finite element methods
- the convergence properties of global spectral methods

- the flexibility of finite element methods
- the convergence properties of global spectral methods

- the flexibility of finite element methods
- the convergence properties of global spectral methods

					::			
	:::	:::	:::		::	:::		
_								
					• •			
		• •			• •			
		• •			• •			
		• •			• •	• •		
	111	11	11	1	2.2	1.1		
			1.1	÷.	11	11		
		•••	•••		•••			
	•••	• •	• •	•	• •	••	• • • •	
		• •	• •	•	• •	• •		
		• •	• •	•	• •	• •		
		• •	• •	•	• •	• •		
		• •			• •			
					• •			
					• •	• •		
					• •			

SEMs combine:

- the flexibility of finite element methods
- the convergence properties of global spectral methods

Most SEMs cost $\mathcal{O}(p^6/h^2) = \mathcal{O}(Np^4)$, so the slider is biased. "In practice, hp-adaptivity means $p \leq 6$." [Sherwin, 2014] "As expected, the numerical results indicate that in the case of smooth solutions, one should fix the mesh and vary the polynomial order according to the desired accuracy (p-convergence)." [Sherwin, 2014]

"While flow discontinuities are understandably better resolved with h-refinement, it is found that in regions of smooth flow, p-refinement offers a higher accuracy with the same number of degrees of freedom." [Li & Jameson, 2010]

"Within each of these elements the solution is represented by Nth-order polynomials, where N = 5-15 is most common but N = 1-100 or beyond is feasible." [Fischer, 2016]

Want to choose *hp* based on physical considerations, not computational ones.

Given values on a grid, what are the values of the derivative on that same grid?

Given values on a grid, what are the values of the derivative on that same grid?

Given values on a grid, what are the values of the derivative on that same grid?

Differentiation $\{x_k\} \rightarrow \{x_k\}$ is **dense**:

$$u'(x_k) = (\mathbb{I}_{\{u(x_j)\}})'(x_k)$$

The derivative at the *k*-th point depends on the values of *u* at all points.

- 1. Dense matrices
- 2. Ill-conditioned matrices
- 3. When has it converged? Tricky.

1. Dense matrices

2. Ill-conditioned matrices

3. When has it converged? Tricky.

 $u''(x) + \cos(x)u(x) = 0$

- 1. Dense matrices
- 2. Ill-conditioned matrices
- 3. When has it converged? Tricky.

- 1. Dense matrices
- 2. Ill-conditioned matrices
- 3. When has it converged? Tricky.

Spectral methods can be sparse and well-conditioned Fourier spectral method (for periodic problems)

Idea: Represent *u* as coefficients of a Fourier series instead of values on a grid.

$$u(x) = \sum_{k=0}^{n-1} u_k e^{ikx}$$

Differentiation $\{e^{ikx}\} \rightarrow \{e^{ikx}\}$ is sparse:

$$\frac{d}{dx}e^{ikx} = ike^{ikx}$$

$$u''(x) + \cos(x)u(x) = 0$$

The classical Fourier spectral method is sparse and well-conditioned for periodic problems.

Spectral methods can be sparse and well-conditioned Chebyshev tau method

Idea: Represent *u* as coefficients of a Chebyshev series.

$$u(x) = \sum_{k=0}^{n-1} u_k T_k(x), \qquad T_k(x) = \cos(k \cos^{-1} x)$$

Differentiation $\{T_k(x)\} \rightarrow \{T_k(x)\}$ is dense:

$$T_k'(x) = egin{cases} 2k \sum_{j ext{ odd }}^{k-1} T_j(x), & k ext{ even}, \ 2k \sum_{j ext{ even }}^{k-1} T_j(x) - 1, & k ext{ odd}. \end{cases}$$

The Chebyshev tau method is dense and ill-conditioned.

Idea: Represent *u* as coefficients of a Chebyshev series.

$$u(x) = \sum_{k=0}^{n-1} u_k T_k(x), \qquad T_k(x) = \cos(k \cos^{-1} x)$$

Remedy: Let differentiation convert to ultraspherical bases.

$$T'_{k}(x) = kC^{(1)}_{k-1}(x), \qquad T''_{k}(x) = 2kC^{(2)}_{k-2}(x), \qquad T'''_{k}(x) = 8kC^{(3)}_{k-3}(x), \qquad \dots$$

Then differentiation $\{T_k(x)\} \rightarrow \{C_k^{(\lambda)}(x)\}$ is sparse.

Differentiation:

$$T'_{k}(x) = kC^{(1)}_{k-1}(x), \qquad \mathcal{D} = \begin{pmatrix} 0 & 1 & & \\ & 2 & & \\ & & 3 & \\ & & & \ddots \end{pmatrix}$$

(1 0 1)

١

Conversion:

$$T_{k}(x) = \frac{1}{2} \left(C_{k}^{(1)} - C_{k-2}^{(1)} \right), \qquad S = \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ \frac{1}{2} & 0 & -\frac{1}{2} \\ & \frac{1}{2} & 0 & \ddots \\ & & \frac{1}{2} & 0 & \ddots \\ & & & \ddots & \ddots \end{pmatrix}$$

Multiplication:

$$a(x) pprox \sum_{k=0}^{m-1} a_k T_k(x), \quad T_j(x) T_k(x) = rac{1}{2} \left(T_{|j-k|} + T_{j+k}
ight), \quad m ext{-banded operation}$$

- 1. Almost banded matrices
- 2. Well-conditioned matrices
- 3. When has it converged? Easy.

1. Almost banded matrices

2. Well-conditioned matrices

3. When has it converged? Easy.

 $u''(x)+\cos(x)u(x)=0$

- 1. Almost banded matrices
- 2. Well-conditioned matrices
- 3. When has it converged? Easy.

- 1. Almost banded matrices
- 2. Well-conditioned matrices
- 3. When has it converged? Easy.

$$u'(x) + x^3 u(x) = 100 \sin(20000x^2), \qquad u(-1) = 0$$

The ultraspherical spectral method in 2D Solving PDEs on rectangles

Solve the elliptic PDE

$$\mathcal{L}u(x, y) = f(x, y)$$
 in $[-1, 1]^2$
 $u(x, y) = g(x, y)$ on boundary

where

$$\mathcal{L} = \sum_{i=0}^{2} \sum_{j=0}^{2-i} a_{ij}(x, y) \frac{\partial^{i+j}}{\partial x^{i} \partial y^{j}}$$

The ultraspherical spectral method in 2D Solving PDEs on rectangles

Solve the elliptic PDE

$$\mathcal{L}u(x, y) = f(x, y)$$
 in $[-1, 1]^2$
 $u(x, y) = g(x, y)$ on boundary

where

The ultraspherical spectral method in 2D Solving PDEs on rectangles

$$abla^2 u + 10000 \cos^2 y(\frac{1}{2} + \sin^2 x) u = \cos xy, \qquad u(\cdot, \pm 1) = u(\pm 1, \cdot) = 1$$

The ultraspherical spectral method in 2D Solving PDEs on kites

The ultraspherical spectral method in 2D Solving PDEs on kites

 (ξ, η)

The ultraspherical spectral method in 2D Solving PDEs on kites

The ultraspherical spectral element method Two glued squares

The ultraspherical spectral element method Two glued squares

The ultraspherical spectral element method Building blocks

- 1. Solution operator: $S \in \mathbb{R}^{n^2 \times 4n}$
 - Naps *n* coefficients of Dirichlet data on each side to $n \times n$ coefficients of the solution.

The ultraspherical spectral element method Building blocks

- 1. Solution operator: $S \in \mathbb{R}^{n^2 \times 4n}$
 - Apply the solution Maps n coefficients of Dirichlet data on each side to $n \times n$ coefficients of the solution.

- 2. Dirichlet-to-Neumann map: $DtN \in \mathbb{R}^{4n \times 4n}$
 - Maps n coefficients of Dirichlet data on each side to n coefficients of the normal derivative of the solution on each side.

The ultraspherical spectral element method Building blocks

- 1. Solution operator: $S \in \mathbb{R}^{n^2 \times 4n}$
 - Naps *n* coefficients of Dirichlet data on each side to $n \times n$ coefficients of the solution.

- 2. Dirichlet-to-Neumann map: $DtN \in \mathbb{R}^{4n \times 4n}$
 - Maps n coefficients of Dirichlet data on each side to n coefficients of the normal derivative of the solution on each side.

- 1. Solution operator: $S \in \mathbb{R}^{n^2 \times 4n}$
 - Naps *n* coefficients of Dirichlet data on each side to $n \times n$ coefficients of the solution.

- 1. Solution operator: $S \in \mathbb{R}^{n^2 \times 4n}$
 - Maps *n* coefficients of Dirichlet data on each side to $n \times n$ coefficients of the solution.

How does the n^{th} Dirichlet coefficient affect the solution?

- 1. Solution operator: $S \in \mathbb{R}^{n^2 \times 4n}$
 - Maps *n* coefficients of Dirichlet data on each side to $n \times n$ coefficients of the solution.

How does the *n*th Dirichlet coefficient affect the solution?

- 1. Solution operator: $S \in \mathbb{R}^{n^2 \times 4n}$
 - Maps *n* coefficients of Dirichlet data on each side to $n \times n$ coefficients of the solution.

- 1. Solution operator: $S \in \mathbb{R}^{n^2 \times 4n}$
 - Maps *n* coefficients of Dirichlet data on each side to $n \times n$ coefficients of the solution.

- 1. Solution operator: $S \in \mathbb{R}^{n^2 \times 4n}$
 - Maps *n* coefficients of Dirichlet data on each side to $n \times n$ coefficients of the solution.

- 1. Solution operator: $S \in \mathbb{R}^{n^2 \times 4n}$
 - Maps *n* coefficients of Dirichlet data on each side to $n \times n$ coefficients of the solution.

$$\begin{split} \mathbf{S}_{12}, \ \mathbf{D}t\mathbf{N}_{12} \\ \vdots \\ \mathbf{S}_{12} = -\left(\mathbf{D}t\mathbf{N}_{1}^{\Gamma,\Gamma} + \mathbf{D}t\mathbf{N}_{2}^{\Gamma,\Gamma}\right)^{-1} \begin{bmatrix} \mathbf{D}t\mathbf{N}_{1}^{\Gamma,1} \\ \mathbf{D}t\mathbf{N}_{2}^{\Gamma,2} \end{bmatrix} \\ \mathbf{D}t\mathbf{N}_{12} = \begin{bmatrix} \mathbf{D}t\mathbf{N}_{1}^{\Gamma,1} & \mathbf{0} \\ \mathbf{0} & \mathbf{D}t\mathbf{N}_{2}^{\Gamma,2} \end{bmatrix} + \begin{bmatrix} \mathbf{D}t\mathbf{N}_{1}^{1,\Gamma} \\ \mathbf{D}t\mathbf{N}_{2}^{2,\Gamma} \end{bmatrix} \mathbf{S}_{12} \end{split}$$

A hierarchical variant of the Schur complement method.

Gunnar Martinsson Adrianna Gillman

[Martinsson, 2013] [Gillman & Martinsson, 2014]

A hierarchical variant of the Schur complement method.

Gunnar Martinsson Adrianna Gillman

[Martinsson, 2013] [Gillman & Martinsson, 2014] Build element operators

 $\mathcal{O}(p^4)$

S_1, DtN_1	S ₂ , DtN ₂
S_3 , DtN_3	S ₄ , DtN ₄

A hierarchical variant of the Schur complement method.

Gunnar Martinsson Adrianna Gillman

[Martinsson, 2013] [Gillman & Martinsson, 2014]

 $\mathcal{O}(p^3)$

A hierarchical variant of the Schur complement method.

Gunnar Martinsson Adrianna Gillman

[Martinsson, 2013] [Gillman & Martinsson, 2014]

 $\mathcal{O}(p^3)$ Merge operators S_{12} , DtN_{12} S_{34} , DtN_{34}

A hierarchical variant of the Schur complement method.

Gunnar Martinsson Adrianna Gillman

[Martinsson, 2013] [Gillman & Martinsson, 2014]

Solution operators stored in memory!

Merge operators

 $\mathcal{O}(p^3)$

A hierarchical variant of the Schur complement method.

Gunnar Martinsson Adrianna Gillman

[Martinsson, 2013] [Gillman & Martinsson, 2014]

Solution operators stored in memory!

 S_{1234} , DtN_{1234}

Inject Dirichlet data

A hierarchical variant of the Schur complement method.

Gunnar Martinsson Adrianna Gillman

[Martinsson, 2013] [Gillman & Martinsson, 2014]

Solution operators stored in memory!

Apply merged operators $\mathcal{O}(p^2 + p \log p)$ S₁₂₃₄, DtN₁₂₃₄

A hierarchical variant of the Schur complement method.

Gunnar Martinsson Adrianna Gillman

[Martinsson, 2013] [Gillman & Martinsson, 2014]

Solution operators stored in memory!

Apply merged operators $\mathcal{O}(p^2 + p \log p)$ S_{12} , DtN_{12} S₃₄. DtN₃₄

A hierarchical variant of the Schur complement method.

Gunnar Martinsson Adrianna Gillman

[Martinsson, 2013] [Gillman & Martinsson, 2014]

Solution operators stored in memory!

Apply merged operators $\mathcal{O}(p^2 + p \log p)$ S_1 , DtN_1 S_2 , DtN_2 S_3 , DtN_3 S_4 , DtN_4

A hierarchical variant of the Schur complement method.

Gunnar Martinsson Adrianna Gillman

[Martinsson, 2013] [Gillman & Martinsson, 2014]

Solution operators stored in memory!

Apply merged operators $\mathcal{O}(p^2 + p \log p)$

The sparsity of the ultraspherical spectral method allows us to build solution operators on each leaf in $\mathcal{O}(p^4)$ instead of $\mathcal{O}(p^6)$. For $N = p^2/h^2$ degrees of freedom:

The storage complexity scales as $\mathcal{O}(p^3/h^2)$.

The ultraspherical spectral element method Timestepping

$$rac{\partial u}{\partial t} =
abla^2 u$$
, **x** in interior
 $u(\mathbf{x}, 0) = f(\mathbf{x})$, **x** in interior
 $u(\mathbf{x}, t) = g(\mathbf{x}, t)$, **x** on boundary

Discretize in time with with an implicit method, e.g., backward Euler. At each time point we must solve

$$(I - \Delta t \nabla^2) u^k = u^{k-1}, \quad \mathbf{x} \text{ in interior}$$

 $u^k = g^k, \quad \mathbf{x} \text{ on boundary}$

The ultraspherical spectral element method Timestepping

$$rac{\partial u}{\partial t} =
abla^2 u$$
, **x** in interior
 $u(\mathbf{x}, 0) = f(\mathbf{x})$, **x** in interior
 $u(\mathbf{x}, t) = g(\mathbf{x}, t)$, **x** on boundary

Discretize in time with with an implicit method, e.g., backward Euler. At each time point we must solve

$$(I - \Delta t \nabla^2) u^k = u^{k-1}, \quad \mathbf{x} \text{ in interior}$$

 $u^k = g^k, \quad \mathbf{x} \text{ on boundary}$

construct solution operator once, apply in $\mathcal{O}(p^2)$ with downwards pass

Solution operator at top level can be reused for fast implicit solves.

Demo

- **Benchmarking**: rigorous timing tests to determine practicality.
- **Adaptivity**: automatically detect where to refine *h* and *p*.
- **Timestepping**: solution operator can be reused for fast implicit solves.
- Skinny elements: high accuracy on elements with small aspect ratio.
- **Parallelizablity**: leaf computations decouple.

Thank you

(Open-source code coming soon.)