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Introduction

Surface PDEs

Surface-bound phenomena arise in many applications.

Thin-film hydrodynamics [Saye, 2016] Pattern formation [Jeong, 2017] Geodesic distance [Crane et al., 2017]

PSP

Cell polarization [Miller, F., Muratov, Greengard, Shvartsman, 2021]
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Vesicle flows [Veerapaneni et al., 2011] Stellarator design [Malhotra et al., 2019]
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Introduction

Surface PDEs

Surface PDEs describe the dynamics of such phenomena.

Time-dependent problem
U = Lru+N(u) onT

Steady-state problem
Lru(x)=f(x), xeT

N—— N——
Linear Nonlinear

* Laplace—Beltrami \/ * reaction—diffusion

e convection—diffusion  heat
» steady Stokes Implicit time discretization: e Navier-Stokes

(I — AtLr) u* ™ = u* + AN (u¥)

Model surface PDE: Vr - (A(x)Vru(x))+ Vi - (b(x)u(x)) + c(x)u(x) = f(x)

(+ BCs if surface is not closed)




Surface PDEs

Differential operators

x(&,m)
x(&n) = |y(&n)| : R - R?
z(&,m).
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 Metric tensor g = encodes how lengths and angles change along surface.

» Surface gradient: Vru =[x x,] g ' Veyu o — e, -V
 Surface divergence: Vr - u = 1 Ven - (\/detg U) 0 =e, - Vr
' Jdetg = y Y
o Laplace-Beltrami: Aru= Vr-Vr5u= : Ve - (\/detgg_l Ve U) 0 =e, -V
p - \/dEtg Ui n Z Z B




Surface representation

Low-order vs. high-order

 Many ways to represent a surface. Meshes are a good choice for CAD-compatibility.
 High-order elements allow faster convergence to solution.
 (Coordinate maps of a patch are discretized via tabulation at Chebyshev nodes.

Coarse Fine

Low order

N\

Tensor-product
Chebyshev nodes

High order




High-order discretization

Spectral collocation

 Function values also stored at Chebyshev nodes.
* Derivatives and metric information (e.g. Jacobian) computed via spectral differentiation.
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High-order discretization

Spectral collocation

 Function values also stored at Chebyshev nodes.
* Derivatives and metric information (e.g. Jacobian) computed via spectral differentiation.
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High-order discretization

Spectral collocation on a surface

 PDE is discretized through spectral differentiation and pointwise multiplication.

I—: ® ® ® B :-I (Xl_j7yU7ZU)

Tu_)g.; > y

 For example, the discrete tangential x-derivative operator is;:

AN AN
Do=| (€3 |(Con +| )y |(D

AN RN

 In general, the PDE results ina (p+1)° x (p+ 1)° linear system, Lru = f, which we can invert directly.
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Two glued patches
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High-order discretization

Two glued patches

. _ s 51 &1 — U7 52 82 —> U>
 Know how to do local solves on each element: Solution operator Uglue Uglue

 Know how information flows out of each element: “Dirichlet-to-Neumann map” g 2
DtN, — 94 DtN; — G

C : : ony
 Take Schur complement to eliminate interior degrees of freedom:  Yglue  Yglue

_Dtnglue,]-- g]_
D/\.8lue;2 Sglue 2 — Uglue
2

1
Spe = — (Dtng'”e n Dt/v;'“e)




A fast direct solver on surfaces

Hierarchical Poincare-Steklov method

Key idea: Recursively glue elements together in a hierarchy.

Gunnar Martinsson Adrianna Gillman
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A fast direct solver on surfaces

Hierarchical Poincare-Steklov method

Key idea: Recursively glue elements together in a hierarchy.

Apply solution operators O(N log N)

N3/2

N——

Factorization

Gunnar Martinsson Adrianna Gillman

N log N
N——
Solve

Factorization results in a hierarchy of solution operators
stored in memory, so repeated solves are fast.




A fast direct solver on surfaces

Laplace—-Beltrami and rank deficiency

ArU:f

 The Laplace—Beltrami problem on a closed surface is rank-one deficient, but is uniquely solvable under the

mean-zero conditions:
/ U = O and / f p— O
r I

* |n HPS, this rank deficiency is only seen in the final gluing:

dim (nuu (Dtng'“e + Dt/v;'“e)) 1
_—

* We use the “ones matrix” to fix the rank deficiency at the top level:

dim (nuu (Dtng'“e + DENEYe + 11T)) — 0




Examples

Laplace-Beltrami and convergence

Aru=f, T = sphere 10

10°°

Maximum pointwise error

u(x) = spherical harmonic, Y,"(x) 10!

f(x) = —0(0+1)Y"(x) 1/h




Examples

Laplace—-Beltrami: “accuracy vs
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Maximum pointwise error
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Glue conditions also allow for sharp interfaces and corners.
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but high-order convergence may be lost.
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Glue conditions also allow for sharp interfaces and corners...




Examples

Hodge decomposition

Any smooth vector field f tangent to a surface can be written as:

f =Vru+nxVyirv+w
—_——  —

curl-free div-free  harmonic
where w satisfies Vi -w =0 and Vi - (n x w) = 0.

Such decompositions play an important role in integral
representations for computational electromagnetics.

divergence-free curl-free harmonic

lllustration by Keenan Crane
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Examples

Hodge decomposition

Any smooth vector field f tangent to a surface can be written as:

f =Vru+nxVyirv+w
—_——  —

curl-free div-free  harmonic
where w satisfies Vi -w =0 and Vi - (n x w) = 0.

Such decompositions play an important role in integral
representations for computational electromagnetics.

One may compute this decomposition by solving

Aru
ArV

Vi f
—Vr°(n><f)

divergence-free curl-free harmonic

and then settingw = f — Vru — n x V.

lllustration by Keenan Crane
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Examples
Hodge decomposition

divergence-free curl-free harmonic




Examples

Hodge decomposition: “accuracy vs. effort”
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Examples

Reaction—diffusion systems

 Reaction and diffusion timescales are often orders of magnitude different.

94 = Lru+N(u) onT

Diffusion Reaction

* |Implicit time-stepping can alleviate stability issues (e.g., backward Euler or IMEX-BDF4)

% _ LrU N(U) (e.g. backward Euler) uk+1 _ (/ B At[,r)_l (uk 4 AtN(Uk))
N———

Stored in RAM,
very fast apply

* |f geometry, time step, and parameters do not change with time, we can precompute
a solver once and reuse it at every step.




Examples

Reaction—diffusion systems










Examples

Eigenvalue problems with Mengjian Hua (NYU) and Dhairya Malhotra (Flatiron)

Aru — \U

Simultaneous inverse iteration: Q(O) — rand (N, m) .
Stored in RAM,

for k=1,2, ... /- very fast apply

Z(k—l) _ AFlQ(k_l)
QW RMK) — Z(k-1)

= —10.93... = —44.66... = —1000.56... A= —998.11...




Software

github.com/danfortunato/surface-hps

* Provides abstractions for computing with functions on surfaces in MATLAB.
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