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What is a spectral method?
Approximation theory

Definition: A numerical method is called a spectral method if its convergence

rate is as fast as the smoothness of the answer allows.

m-differentiable? “algebraic” / “mth order”→ O(N−m)

∞-differentiable? “superalgebraic” / “subgeometric”→O(N−m) for every m g 0

analytic? “geometric” / “exponential”→ O(c−N) for some c > 1S
m

o
o
th

e
r

Such accuracy is called spectral accuracy.
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Representing functions on a computer
Values or coefficients?

Suppose we are approximating a function u(x) defined on [−1,1]. How should we discretize u

so that we may compute with it to spectral accuracy?
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Representing functions on a computer
Values or coefficients?

Suppose we are approximating a function u(x) defined on [−1,1]. How should we discretize u

so that we may compute with it to spectral accuracy?

Values at grid points

u(x) =

N
∑

k=0

uk ℓk (x)

u(xk )

Lagrange polynomials

“nodal”, “pseudospectral”, “collocation”

Coefficients of basis functions

u(x) =

N
∑

k=0

ûkϕk (x)

(u, ϕk )ϕ

(ϕk , ϕk )ϕ

orthogonal polynomials

“modal”, “spectral”, “frequency domain”

fast transforms
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Representing functions on a computer
Values or coefficients?

What grid points {xk } or basis functions {ϕk } should we use on [−1,1]?

Periodic? Equispaced nodes / Fourier series

xk = −1 +
2k

N
, ϕk (x) = e iÃkx

Non-periodic? Chebyshev nodes / Chebyshev series (or others – just need to avoid Runge phenomenon)

xk = cos
(

kÃ

N

)

, ϕk (x) = Tk (x) = cos(k cos−1 x)

Image by Keaton Burns
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Numerical computing with functions
Differentiation, integration, evaluation, convolution, ...

u(x) =

N
∑

k=0

uk ℓk (x) =

N
∑

k=0

ûkϕk (x)

Once we have this representation, many operations are easy — just apply the operation to

each term in the sum.

To get a flavor of each representation, let’s focus on differentiation using both values and

coefficients.

We’ll look at a traditional take and a modern take on each.
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Value-based spectral methods

u(x) =

N
∑

k=0

ukℓk(x)
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Value-based spectral methods
Differentiation

Given values on a grid, what are the values of the derivative on that same grid?

x0 xk xN

(Chebyshev points)
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Value-based spectral methods
Differentiation

Given values on a grid, what are the values of the derivative on that same grid?

u′(x0)

u′(xk )

u′(xN)

∑N
j=0 uk ℓk (x)

∑N
j=0 uk ℓ

′
k
(x)

Differentiation {xk } → {xk } is dense:

u′(xj) =

N
∑

k=0

uk ℓ
′
k (xj) =

N
∑

k=0

u′k ℓk (xj)

The derivative at the k -th point depends on the values of u at all points.

[Fornberg, 1998], [Trefethen, 2000]
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Value-based spectral methods
Differentiation

Given values on a grid, what are the values of the derivative on that same grid?

u′(x0)

u′(xk )

u′(xN)

∑N
j=0 uk ℓk (x)

∑N
j=0 uk ℓ

′
k
(x)

We can write down the dense matrix DN ∈ R
(N+1)×(N+1) such that

DN



















u0
...

uN



















=



















u′
0
...

u′
N



















Such a matrix is called a differentiation matrix.
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Value-based spectral methods
Rectangular differentiation

Modern take: [Driscoll & Hale, 2015]

Differentiating a degree-N polynomial yields a degree-(N − 1) polynomial.

Therefore, DN should map values on an (N + 1)-point grid to values on an N-point grid.

That is, DN should be rectangular: D̃N ∈ R
N×(N+1).

If PN−1,N is a resampling matrix from the (N + 1)-point grid to the N-point grid, then

D̃N = PN−1,NDN.

Toby Driscoll Nick Hale
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Value-based spectral methods
Rectangular differentiation

Modern take: [Driscoll & Hale, 2015]

Differentiating a degree-N polynomial yields a degree-(N − 1) polynomial.

Therefore, DN should map values on an (N + 1)-point grid to values on an N-point grid.

That is, DN should be rectangular: D̃N ∈ R
N×(N+1).

If PN−1,N is a resampling matrix from the (N + 1)-point grid to the N-point grid, then

D̃N = PN−1,NDN.

Why is this useful? Boundary conditions.

Toby Driscoll Nick Hale
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Value-based spectral methods
Rectangular collocation [Driscoll & Hale, 2015]

Consider the ODE
u′(x) + a(x)u(x) = f(x), x ∈ [−1,1]

u(−1) = c

Traditional spectral collocation:

Lu =



























DN +





















a(x0)
. . .

a(xN)



































































u(x0)
...

u(xN)





















=





















f(x0)
...

f(xN)





















= f

Bu =
[

1 0 · · · 0
]





















u(x0)
...

u(xN)





















= c

9/20



Value-based spectral methods
Rectangular collocation [Driscoll & Hale, 2015]

Consider the ODE
u′(x) + a(x)u(x) = f(x), x ∈ [−1,1]

u(−1) = c

Traditional spectral collocation:

Lu =



























DN +





















a(x0)
. . .

a(xN)



































































u(x0)
...

u(xN)





















=





















f(x0)
...

f(xN)





















= f

Bu =
[

1 0 · · · 0
]





















u(x0)
...

u(xN)





















= c

[

B

L

]

u =

[

c

f

]

System is rectangular — one too many rows.
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



= c
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B
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]

u =

[

c

f(1 :N)

]

System is rectangular — one too many rows.

Delete a row. But which one...
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Value-based spectral methods
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Consider the ODE
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








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


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















f(x0)
...

f(xN)








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








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



u(x0)
...

u(xN)








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
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




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B

PN−1,NL

]

u =

[

c

PN−1,Nf

]

System is square.

We have precisely the space we need for B.
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Value-based spectral methods
Rectangular collocation [Driscoll & Hale, 2015]

Drake’s summary of [Driscoll & Hale, 2015]:
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Coefficient-based spectral methods

u(x) =

N
∑

k=0

ûkϕk(x)
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Coefficient-based spectral methods
Fourier differentiation

Given coefficients in a basis, what are the coefficients of the derivative in that same basis?

Suppose u(x) is periodic on [−1,1]. Let’s represent u using a Fourier series, so ϕk (x) = e iÃkx :

u(x) =

N/2
∑

k=−N/2

ûk e iÃkx

12/20



Coefficient-based spectral methods
Fourier differentiation

Given coefficients in a basis, what are the coefficients of the derivative in that same basis?

Suppose u(x) is periodic on [−1,1]. Let’s represent u using a Fourier series, so ϕk (x) = e iÃkx :

u(x) =

N/2
∑

k=−N/2
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Coefficient-based spectral methods
Fourier differentiation

Given coefficients in a basis, what are the coefficients of the derivative in that same basis?

Suppose u(x) is periodic on [−1,1]. Let’s represent u using a Fourier series, so ϕk (x) = e iÃkx :

u(x) =

N/2
∑

k=−N/2

ûk e iÃkx

Differentiation
{

e iÃkx
}

→
{

e iÃkx
}

is sparse:

u′(x) =

N/2
∑

k=−N/2

ûkϕ
′
k (x) =

N/2
∑

k=−N/2

ûk iÃke iÃkx =

N/2
∑

k=−N/2

û′k e iÃkx

The k -th coefficient of the derivative depends only on the k -th coefficient of u.
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Coefficient-based spectral methods
Fourier differentiation

Given coefficients in a basis, what are the coefficients of the derivative in that same basis?

Suppose u(x) is periodic on [−1,1]. Let’s represent u using a Fourier series, so ϕk (x) = e iÃkx :

u(x) =

N/2
∑

k=−N/2

ûk e iÃkx

We can write down the diagonal matrix D̂N ∈ R
(N+1)×(N+1) such that

D̂N























û−N/2

...
ûN/2























=























û′
−N/2

...
û′

N/2






















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Coefficient-based spectral methods
Chebyshev differentiation

Given coefficients in a basis, what are the coefficients of the derivative in that same basis?

Suppose u(x) is non-periodic on [−1,1]. Let’s represent u using a Chebyshev series, so

ϕk (x) = Tk (x):

u(x) =

N
∑

k=0

ûk Tk (x)

Differentiation
{

Tk (x)
}

→
{

Tk (x)
}

is dense:

T ′k (x) =















2k
∑k−1

j odd Tj(x), k even,

2k
∑k−1

j even Tj(x) − 1, k odd.

The k -th coefficient of the derivative depends on many coefficients of u.
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Coefficient-based spectral methods
Ultraspherical differentiation

Given coefficients in a basis, what are the coefficients of the derivative in that same basis?

Suppose u(x) is non-periodic on [−1,1]. Let’s represent u using a Chebyshev series, so

ϕk (x) = Tk (x):

u(x) =

N
∑

k=0

ûk Tk (x)

Modern take: Let differentiation change the basis. [Olver & Townsend, 2012]

T ′k (x) = kC
(1)

k−1
(x), T ′′k (x) = 2kC

(2)

k−2
(x), T ′′′k (x) = 8kC

(3)

k−3
(x), . . .

Then differentiation
{

Tk (x)
}

→ {C
(¼)

k
(x)} is sparse.

Sheehan Olver Alex Townsend
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Coefficient-based spectral methods
Ultraspherical spectral method [Olver & Townsend, 2012]

Differentiation:

T ′k (x) = kC
(1)

k−1
(x), D̂N =



























0 1

2

3
. . .



























Conversion:

Tk (x) =
1
2

(

C
(1)

k
− C

(1)

k−2

)

, ŜN =



































1 0 −1
2

1
2

0 −1
2

1
2

0
. . .

. . .
. . .



































Multiplication:

a(x) ≈

m−1
∑

k=0

âk Tk (x), Tj(x)Tk (x) =
1
2

(

T|j−k | + Tj+k

)

, m-banded operation
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Coefficient-based spectral methods
Ultraspherical spectral method [Olver & Townsend, 2012]

Consider the ODE
u′(x) + a(x)u(x) = f(x), x ∈ [−1,1]

u(−1) = c

L û =
(

D̂N + ŜNM̂N[a]
)





















û0

...
ûN





















= ŜN























f̂0
...

f̂N























= ŜN f̂ , Bû =
[

T0(−1) · · · TN(−1)
]





















û0

...
ûN





















= c
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System is rectangular — one too many rows.

Last row is all zeros. Delete it.
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D̂N + ŜNM̂N[a]
)





















û0
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Coefficient-based spectral methods
Ultraspherical spectral method [Olver & Townsend, 2012]

Drake’s summary of [Olver & Townsend, 2012]:
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When to use values or coefficients?

Multiplication is inherently local 6 in value space.

Multiplication can be global : in coefficient space.

Differentiation is inherently global : in value space.

Differentiation can be local 6 in coefficient space.

Collocation is often ill-conditioned :.

Coefficient-based methods can be well-conditioned 6.

Coefficient-based methods can be sparse 6.

However, if the degree of variable coefficients is high this sparsity can be lost :.

Best of both worlds: timestepping with IMEX schemes.

▶ Solve linear terms (e.g., diffusion) implicitly using coefficients.
▶ Transform to values.
▶ Evaluate nonlinear terms (e.g., reaction, advection) explicitly using values.
▶ Transform to coefficients.
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Software for spectral methods

MATLAB? Chebfun. (chebfun.org)
▶ Trefethen, Hale, Driscoll, Austin, Aurentz, Townsend, ...

Python? Dedalus. (dedalus-project.org)
▶ Burns, Vasil, Oishi, Lecoanet, ...

Julia? ApproxFun. (github.com/JuliaApproximation/ApproxFun.jl)
▶ Olver, Slevinsky, Townsend, ...
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Applications

High Reynolds number flows

[Dedalus Project, 2019]

High frequency scattering

[Slevinsky & Olver, 2017] Cell polarization
[F., Miller, Greengard, Shvartsman, in prep.]

Very high order element methods

[F., Hale, & Townsend, 2020]
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I didn’t mention

Simple 2D and 3D geometries

▶ Use tensor products of 1D spectral ideas or special basis functions (spherical

harmonics, Zernike polynomials, Bessel functions, double Fourier, etc.).
▶ Orszag, Trefethen, Driscoll, Townsend, Olver, Slevinsky, Hale, Hashemi, Burns, Vasil, ...

Meshes and element methods

▶ Use piecewise high-order patches each of which are each spectral.
▶ Sherwin, Fisher, Patera, Hesthaven, Warburton, Persson, Kolev, Ham, Mitchell, Martinsson, Gillman, ...

Integral equations

▶ Same ideas apply. Use global spectral or piecewise spectral on boundaries.
▶ Greengard, Rokhlin, Barnett, Martinsson, Gillman, Rachh, Malhotra, Kaye, Jiang, Veerapaneni, Vico,

O’Neil, Epstein, ...

Lots of spectral folks here at Flatiron!

Talk to us if your problem might be suitable for a spectral method.
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