Dan Fortunato
CCM

Based on...

Chebyshev and Fourier Spectral Methods

Second Edition (Revised)

What is a spectral method?

Approximation theory

Definition: A numerical method is called a spectral method if its convergence rate is as fast as the smoothness of the answer allows.

Such accuracy is called spectral accuracy.

Representing functions on a computer

Values or coefficients?

Suppose we are approximating a function $u(x)$ defined on $[-1,1]$. How should we discretize u so that we may compute with it to spectral accuracy?

Representing functions on a computer

Values or coefficients?

Suppose we are approximating a function $u(x)$ defined on $[-1,1]$. How should we discretize u so that we may compute with it to spectral accuracy?

Values at grid points

"nodal", "pseudospectral", "collocation"

Representing functions on a computer

Values or coefficients?

Suppose we are approximating a function $u(x)$ defined on $[-1,1]$. How should we discretize u so that we may compute with it to spectral accuracy?

Values at grid points

Lagrange polynomials

$$
u(x)=\sum_{k=0}^{N} u_{k} \ell_{k}(x)
$$

Coefficients of basis functions

"modal", "spectral", "frequency domain"

Representing functions on a computer

Values or coefficients?

What grid points $\left\{x_{k}\right\}$ or basis functions $\left\{\phi_{k}\right\}$ should we use on $[-1,1]$?

- Periodic? Equispaced nodes / Fourier series

$$
x_{k}=-1+\frac{2 k}{N}, \quad \phi_{k}(x)=e^{i \pi k x}
$$

- Non-periodic? Chebyshev nodes / Chebyshev series (or others - just need to avoid Runge phenomenon)

$$
x_{k}=\cos \left(\frac{k \pi}{N}\right), \quad \phi_{k}(x)=T_{k}(x)=\cos \left(k \cos ^{-1} x\right)
$$

Image by Keaton Burns

Numerical computing with functions

Differentiation, integration, evaluation, convolution, ...

$$
u(x)=\sum_{k=0}^{N} u_{k} \ell_{k}(x)=\sum_{k=0}^{N} \hat{u}_{k} \phi_{k}(x)
$$

- Once we have this representation, many operations are easy - just apply the operation to each term in the sum.
- To get a flavor of each representation, let's focus on differentiation using both values and coefficients.
- We'll look at a traditional take and a modern take on each.

Value-based spectral methods

$$
u(x)=\sum_{k=0}^{N} u_{k} \ell_{k}(x)
$$

Value-based spectral methods

Differentiation

Given values on a grid, what are the values of the derivative on that same grid?

Value-based spectral methods

Differentiation

Given values on a grid, what are the values of the derivative on that same grid?

Value-based spectral methods

Differentiation

Given values on a grid, what are the values of the derivative on that same grid?

Differentiation $\left\{x_{k}\right\} \rightarrow\left\{x_{k}\right\}$ is dense:

$$
u^{\prime}\left(x_{j}\right)=\sum_{k=0}^{N} u_{k} \ell_{k}^{\prime}\left(x_{j}\right)=\sum_{k=0}^{N} u_{k}^{\prime} \ell_{k}\left(x_{j}\right)
$$

The derivative at the k-th point depends on the values of u at all points.
[Fornberg, 1998], [Trefethen, 2000]

Value-based spectral methods

Differentiation

Given values on a grid, what are the values of the derivative on that same grid?

We can write down the dense matrix $D_{N} \in \mathbb{R}^{(N+1) \times(N+1)}$ such that

$$
D_{N}\left(\begin{array}{c}
u_{0} \\
\vdots \\
u_{N}
\end{array}\right)=\left(\begin{array}{c}
u_{0}^{\prime} \\
\vdots \\
u_{N}^{\prime}
\end{array}\right)
$$

Such a matrix is called a differentiation matrix.

Value-based spectral methods

Rectangular differentiation

Modern take: [Driscoll \& Hale, 2015]

- Differentiating a degree- N polynomial yields a degree-($N-1$) polynomial.

Value-based spectral methods

Rectangular differentiation

Modern take: [Driscoll \& Hale, 2015]

- Differentiating a degree- N polynomial yields a degree- $(N-1)$ polynomial.
- Therefore, D_{N} should map values on an $(N+1)$-point grid to values on an N-point grid.

Nick Hale

Value-based spectral methods

Rectangular differentiation

Modern take: [Driscoll \& Hale, 2015]

- Differentiating a degree- N polynomial yields a degree-($N-1$) polynomial.
- Therefore, D_{N} should map values on an $(N+1)$-point grid to values on an N-point grid.
- That is, D_{N} should be rectangular: $\tilde{D}_{N} \in \mathbb{R}^{N \times(N+1)}$.

Value-based spectral methods

Rectangular differentiation
Modern take: [Driscoll \& Hale, 2015]

- Differentiating a degree- N polynomial yields a degree-($N-1$) polynomial.
- Therefore, D_{N} should map values on an $(N+1)$-point grid to values on an N-point grid.
- That is, D_{N} should be rectangular: $\tilde{D}_{N} \in \mathbb{R}^{N \times(N+1)}$.
- If $P_{N-1, N}$ is a resampling matrix from the $(N+1)$-point grid to the N-point grid, then $\tilde{D}_{N}=P_{N-1, N} D_{N}$.

Value-based spectral methods

Rectangular differentiation

Modern take: [Driscoll \& Hale, 2015]

- Differentiating a degree- N polynomial yields a degree-($N-1$) polynomial.
- Therefore, D_{N} should map values on an $(N+1)$-point grid to values on an N-point grid.
- That is, D_{N} should be rectangular: $\tilde{D}_{N} \in \mathbb{R}^{N \times(N+1)}$.
- If $P_{N-1, N}$ is a resampling matrix from the $(N+1)$-point grid to the N-point grid, then $\tilde{D}_{N}=P_{N-1, N} D_{N}$.

Why is this useful? Boundary conditions.

Value-based spectral methods

Rectangular collocation [Driscoll \& Hale, 2015]
Consider the ODE

$$
\begin{aligned}
u^{\prime}(x)+a(x) u(x) & =f(x), \quad x \in[-1,1] \\
u(-1) & =c
\end{aligned}
$$

Value-based spectral methods

Rectangular collocation [Driscoll \& Hale, 2015]

Consider the ODE

$$
\begin{aligned}
u^{\prime}(x)+a(x) u(x) & =f(x), \quad x \in[-1,1] \\
u(-1) & =c
\end{aligned}
$$

Traditional spectral collocation:

$$
\begin{aligned}
& L \boldsymbol{u}=\left(D_{N}+\left[\begin{array}{ccc}
a\left(x_{0}\right) & & \\
& \ddots & \\
& & a\left(x_{N}\right)
\end{array}\right]\right)\left[\begin{array}{c}
u\left(x_{0}\right) \\
\vdots \\
u\left(x_{N}\right)
\end{array}\right]=\left[\begin{array}{c}
f\left(x_{0}\right) \\
\vdots \\
f\left(x_{N}\right)
\end{array}\right]=\boldsymbol{f} \\
& B \boldsymbol{u}=\left[\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right]\left[\begin{array}{c}
u\left(x_{0}\right) \\
\vdots \\
u\left(x_{N}\right)
\end{array}\right]=c \\
& {\left[\begin{array}{c}
B \\
L
\end{array}\right] \boldsymbol{u}=\left[\begin{array}{l}
c \\
f
\end{array}\right] \quad \text { System is rectangular - one too many rows. } }
\end{aligned}
$$

Value-based spectral methods

Rectangular collocation [Driscoll \& Hale, 2015]

Consider the ODE

$$
\begin{aligned}
u^{\prime}(x)+a(x) u(x) & =f(x), \quad x \in[-1,1] \\
u(-1) & =c
\end{aligned}
$$

Traditional spectral collocation:

$$
\begin{aligned}
& L \boldsymbol{u}=\left(D_{N}+\left[\begin{array}{ccc}
a\left(x_{0}\right) & & \\
& \ddots & \\
& & a\left(x_{N}\right)
\end{array}\right]\left[\begin{array}{c}
u\left(x_{0}\right) \\
\vdots \\
u\left(x_{N}\right)
\end{array}\right]=\left[\begin{array}{c}
f\left(x_{0}\right) \\
\vdots \\
f\left(x_{N}\right)
\end{array}\right]=\boldsymbol{f}\right. \\
& B \boldsymbol{u}=\left[\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right]\left[\begin{array}{c}
u\left(x_{0}\right) \\
\vdots \\
u\left(x_{N}\right)
\end{array}\right]=c \\
& {\left[\begin{array}{l}
B \\
L
\end{array}\right] \boldsymbol{u}=\left[\begin{array}{c}
c \\
\boldsymbol{f}
\end{array}\right]} \\
& \text { System is rectangular - one too many rows. } \\
& \text { Delete a row. But which one... }
\end{aligned}
$$

Value-based spectral methods

Rectangular collocation [Driscoll \& Hale, 2015]

Consider the ODE

$$
\begin{aligned}
u^{\prime}(x)+a(x) u(x) & =f(x), \quad x \in[-1,1] \\
u(-1) & =c
\end{aligned}
$$

Traditional spectral collocation:

$$
\left[\begin{array}{c}
B \\
L(1: N,:)
\end{array}\right] \boldsymbol{u}=\left[\begin{array}{c}
c \\
\boldsymbol{f}(1: N)
\end{array}\right]
$$

System is rectangular - one too many rows.
Delete a row. But which one...

$$
\begin{aligned}
& L \boldsymbol{u}=\left(D_{N}+\left[\begin{array}{lll}
a\left(x_{0}\right) & & \\
& \ddots & \\
& & a\left(x_{N}\right)
\end{array}\right]\left[\begin{array}{c}
u\left(x_{0}\right) \\
\vdots \\
u\left(x_{N}\right)
\end{array}\right]=\left[\begin{array}{c}
f\left(x_{0}\right) \\
\vdots \\
f\left(x_{N}\right)
\end{array}\right]=\boldsymbol{f}\right. \\
& B \boldsymbol{u}=\left[\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right]\left[\begin{array}{c}
u\left(x_{0}\right) \\
\vdots \\
u\left(x_{N}\right)
\end{array}\right]=c
\end{aligned}
$$

Value-based spectral methods

Rectangular collocation [Driscoll \& Hale, 2015]

Consider the ODE

$$
\begin{aligned}
u^{\prime}(x)+a(x) u(x) & =f(x), \quad x \in[-1,1] \\
u(-1) & =c
\end{aligned}
$$

Rectangular spectral collocation:

$$
\begin{aligned}
& L \boldsymbol{u}=\left[D_{N}+\left[\begin{array}{lll}
a\left(x_{0}\right) & & \\
& \ddots & \\
& & a\left(x_{N}\right)
\end{array}\right]\left[\begin{array}{c}
u\left(x_{0}\right) \\
\vdots \\
u\left(x_{N}\right)
\end{array}\right]=\left[\begin{array}{c}
f\left(x_{0}\right) \\
\vdots \\
f\left(x_{N}\right)
\end{array}\right]=\boldsymbol{f}\right. \\
& B \boldsymbol{u}=\left[\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right]\left[\begin{array}{c}
u\left(x_{0}\right) \\
\vdots \\
u\left(x_{N}\right)
\end{array}\right]=c
\end{aligned}
$$

$$
\left[\begin{array}{c}
B \\
P_{N-1, N} L
\end{array}\right] \boldsymbol{u}=\left[\begin{array}{c}
c \\
P_{N-1, N} \boldsymbol{f}
\end{array}\right]
$$

Value-based spectral methods

Rectangular collocation [Driscoll \& Hale, 2015]

Consider the ODE

$$
\begin{aligned}
u^{\prime}(x)+a(x) u(x) & =f(x), \quad x \in[-1,1] \\
u(-1) & =c
\end{aligned}
$$

Rectangular spectral collocation:

$$
\begin{gathered}
L \boldsymbol{u}=\left(D_{N}+\left[\begin{array}{ccc}
a\left(x_{0}\right) & & \\
& \ddots & \\
& & a\left(x_{N}\right)
\end{array}\right]\right)\left[\begin{array}{c}
u\left(x_{0}\right) \\
\vdots \\
u\left(x_{N}\right)
\end{array}\right]=\left[\begin{array}{c}
f\left(x_{0}\right) \\
\vdots \\
f\left(x_{N}\right)
\end{array}\right]=\boldsymbol{f} \\
B \boldsymbol{u}=\left[\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right]\left[\begin{array}{c}
u\left(x_{0}\right) \\
\vdots \\
u\left(x_{N}\right)
\end{array}\right]=c \\
\boldsymbol{u}=\left[\begin{array}{c}
c \\
P_{N-1, N} f
\end{array}\right] \quad \text { We have precisely the space we need for } B .
\end{gathered}
$$

Value-based spectral methods

Rectangular collocation [Driscoll \& Hale, 2015]
Drake's summary of [Driscoll \& Hale, 2015]:

[18 soumis

[8
Hiectichmar

Coefficient-based spectral methods

$$
u(x)=\sum_{k=0}^{N} \hat{u}_{k} \phi_{k}(x)
$$

Coefficient-based spectral methods

 Fourier differentiationGiven coefficients in a basis, what are the coefficients of the derivative in that same basis?

Coefficient-based spectral methods

Fourier dififerentiation

Given coefficients in a basis, what are the coefficients of the derivative in that same basis?

Suppose $u(x)$ is periodic on $[-1,1]$. Let's represent u using a Fourier series, so $\phi_{k}(x)=e^{i \pi k x}$:

$$
u(x)=\sum_{k=-N / 2}^{N / 2} \hat{u}_{k} e^{i \pi k x}
$$

Coefficient-based spectral methods

Fourier differentiation

Given coefficients in a basis, what are the coefficients of the derivative in that same basis?

Suppose $u(x)$ is periodic on $[-1,1]$. Let's represent u using a Fourier series, so $\phi_{k}(x)=e^{i \pi k x}$:

$$
u(x)=\sum_{k=-N / 2}^{N / 2} \hat{u}_{k} e^{i \pi k x}
$$

Differentiation $\left\{e^{i \pi k x}\right\} \rightarrow\left\{e^{i \pi k x}\right\}$ is sparse:

$$
u^{\prime}(x)=\sum_{k=-N / 2}^{N / 2} \hat{u}_{k} \phi_{k}^{\prime}(x)=\sum_{k=-N / 2}^{N / 2} \hat{u}_{k} i \pi k e^{i \pi k x}=\sum_{k=-N / 2}^{N / 2} \hat{u}_{k}^{\prime} e^{i \pi k x}
$$

The k-th coefficient of the derivative depends only on the k-th coefficient of u.

Coefficient-based spectral methods

Fourier differentiation

Given coefficients in a basis, what are the coefficients of the derivative in that same basis?

Suppose $u(x)$ is periodic on $[-1,1]$. Let's represent u using a Fourier series, so $\phi_{k}(x)=e^{i \pi k x}$:

$$
u(x)=\sum_{k=-N / 2}^{N / 2} \hat{u}_{k} e^{i \pi k x}
$$

We can write down the diagonal matrix $\hat{D}_{N} \in \mathbb{R}^{(N+1) \times(N+1)}$ such that

$$
\hat{D}_{N}\left(\begin{array}{c}
\hat{u}_{-N / 2} \\
\vdots \\
\hat{u}_{N / 2}
\end{array}\right)=\left(\begin{array}{c}
\hat{u}_{-N / 2}^{\prime} \\
\vdots \\
\hat{u}_{N / 2}^{\prime}
\end{array}\right)
$$

Coefficient-based spectral methods

Chebyshev differentiation

Given coefficients in a basis, what are the coefficients of the derivative in that same basis?

Coefficient-based spectral methods

Chebyshev differentiation

Given coefficients in a basis, what are the coefficients of the derivative in that same basis?

Suppose $u(x)$ is non-periodic on $[-1,1]$. Let's represent u using a Chebyshev series, so $\phi_{k}(x)=T_{k}(x):$

$$
u(x)=\sum_{k=0}^{N} \hat{u}_{k} T_{k}(x)
$$

Coefficient-based spectral methods

Chebyshev dififerentiation

Given coefficients in a basis, what are the coefficients of the derivative in that same basis?

Suppose $u(x)$ is non-periodic on $[-1,1]$. Let's represent u using a Chebyshev series, so $\phi_{k}(x)=T_{k}(x):$

$$
u(x)=\sum_{k=0}^{N} \hat{u}_{k} T_{k}(x)
$$

Differentiation $\left\{T_{k}(x)\right\} \rightarrow\left\{T_{k}(x)\right\}$ is dense:

$$
T_{k}^{\prime}(x)= \begin{cases}2 k \sum_{j \text { odd }}^{k-1} T_{j}(x), & k \text { even }, \\ 2 k \sum_{j \text { even }}^{k-1} T_{j}(x)-1, & k \text { odd. }\end{cases}
$$

The k-th coefficient of the derivative depends on many coefficients of u.

Coefficient-based spectral methods

Ultraspherical dififerentiation

Given coefficients in a basis, what are the coefficients of the derivative in that same basis?

Suppose $u(x)$ is non-periodic on $[-1,1]$. Let's represent u using a Chebyshev series, so $\phi_{k}(x)=T_{k}(x):$

$$
u(x)=\sum_{k=0}^{N} \hat{u}_{k} T_{k}(x)
$$

Modern take: Let differentiation change the basis. [Olver \& Townsend, 2012]

$$
T_{k}^{\prime}(x)=k C_{k-1}^{(1)}(x), \quad T_{k}^{\prime \prime}(x)=2 k C_{k-2}^{(2)}(x), \quad T_{k}^{\prime \prime \prime}(x)=8 k C_{k-3}^{(3)}(x), \quad \ldots
$$

Then differentiation $\left\{T_{k}(x)\right\} \rightarrow\left\{C_{k}^{(\lambda)}(x)\right\}$ is sparse.

Coefficient-based spectral methods

Ultraspherical spectral method [Olver \& Townsend, 2012]

Differentiation:

$$
T_{k}^{\prime}(x)=k C_{k-1}^{(1)}(x), \quad \hat{D}_{N}=\left(\begin{array}{ccccc}
0 & 1 & & & \\
& & 2 & & \\
& & 3 & \\
& & & \ddots
\end{array}\right)
$$

Conversion:

$$
T_{k}(x)=\frac{1}{2}\left(C_{k}^{(1)}-C_{k-2}^{(1)}\right), \quad \hat{S}_{N}=\left(\begin{array}{cccccc}
1 & 0 & -\frac{1}{2} & & \\
& \frac{1}{2} & 0 & -\frac{1}{2} & \\
& & \frac{1}{2} & 0 & \ddots \\
& & & \ddots & \ddots
\end{array}\right)
$$

Multiplication:

$$
a(x) \approx \sum_{k=0}^{m-1} \hat{a}_{k} T_{k}(x), \quad T_{j}(x) T_{k}(x)=\frac{1}{2}\left(T_{|j-k|}+T_{j+k}\right), \quad m \text {-banded operation }
$$

Coefficient-based spectral methods

Ultraspherical spectral method [Olver \& Townsend, 2012]
Consider the ODE

$$
\begin{aligned}
u^{\prime}(x)+a(x) u(x) & =f(x), \quad x \in[-1,1] \\
u(-1) & =c
\end{aligned}
$$

Coefficient-based spectral methods

Ultraspherical spectral method [Olver \& Townsend, 2012]
Consider the ODE

$$
\begin{aligned}
u^{\prime}(x)+a(x) u(x) & =f(x), \quad x \in[-1,1] \\
u(-1) & =c
\end{aligned}
$$

$$
L \hat{\mathbf{u}}=\left(\hat{D}_{N}+\hat{S}_{N} \hat{M}_{N}[a]\right)\left[\begin{array}{c}
\hat{u}_{0} \\
\vdots \\
\hat{u}_{N}
\end{array}\right]=\hat{S}_{N}\left[\begin{array}{c}
\hat{f}_{0} \\
\vdots \\
\hat{f}_{N}
\end{array}\right]=\hat{S}_{N} \hat{\boldsymbol{f}}, \quad B \hat{\mathbf{u}}=\left[T_{0}(-1) \cdots T_{N}(-1)\right]\left[\begin{array}{c}
\hat{u}_{0} \\
\vdots \\
\hat{u}_{N}
\end{array}\right]=c
$$

$$
\left[\begin{array}{l}
B \\
L
\end{array}\right] \hat{\mathbf{u}}=\left[\begin{array}{c}
C \\
\hat{S}_{N} f
\end{array}\right]
$$

Coefficient-based spectral methods

Ultraspherical spectral method [Olver \& Townsend, 2012]

Consider the ODE

$$
\begin{aligned}
u^{\prime}(x)+a(x) u(x) & =f(x), \quad x \in[-1,1] \\
u(-1) & =c
\end{aligned}
$$

$$
L \hat{\mathbf{u}}=\left(\hat{D}_{N}+\hat{S}_{N} \hat{M}_{N}[a]\right)\left[\begin{array}{c}
\hat{u}_{0} \\
\vdots \\
\hat{u}_{N}
\end{array}\right]=\hat{S}_{N}\left[\begin{array}{c}
\hat{f}_{0} \\
\vdots \\
\hat{f}_{N}
\end{array}\right]=\hat{S}_{N} \hat{\boldsymbol{f}}, \quad B \hat{\mathbf{u}}=\left[T_{0}(-1) \cdots T_{N}(-1)\right]\left[\begin{array}{c}
\hat{u}_{0} \\
\vdots \\
\hat{u}_{N}
\end{array}\right]=c
$$

$$
\left[\begin{array}{l}
B \\
L
\end{array}\right] \hat{\mathbf{u}}=\left[\begin{array}{c}
C \\
\hat{S}_{N} f
\end{array}\right]
$$

System is rectangular - one too many rows. Last row is all zeros. Delete it.

Coefficient-based spectral methods

Ultraspherical spectral method [Olver \& Townsend, 2012]

Consider the ODE

$$
\begin{aligned}
u^{\prime}(x)+a(x) u(x) & =f(x), \quad x \in[-1,1] \\
u(-1) & =c
\end{aligned}
$$

$$
L \hat{\mathbf{u}}=\left(\hat{D}_{N}+\hat{S}_{N} \hat{M}_{N}[a]\right)\left[\begin{array}{c}
\hat{u}_{0} \\
\vdots \\
\hat{u}_{N}
\end{array}\right]=\hat{S}_{N}\left[\begin{array}{c}
\hat{f}_{0} \\
\vdots \\
\hat{f}_{N}
\end{array}\right]=\hat{S}_{N} \hat{\boldsymbol{f}}, \quad B \hat{\mathbf{u}}=\left[T_{0}(-1) \cdots T_{N}(-1)\right]\left[\begin{array}{c}
\hat{u}_{0} \\
\vdots \\
\hat{u}_{N}
\end{array}\right]=c
$$

$$
\left[\begin{array}{c}
B \\
L(0: N-1,:)
\end{array}\right] \hat{\mathbf{u}}=\left[\begin{array}{c}
c \\
\hat{S}_{N-1} \hat{\boldsymbol{f}}(0: N-1)
\end{array}\right] \begin{gathered}
\text { System is rectangular - one too many rows. } \\
\text { Last row is all zeros. Delete it. }
\end{gathered}
$$

Coefficient-based spectral methods

Ultraspherical spectral method [Olver \& Townsend, 2012]

Consider the ODE

$$
\begin{aligned}
u^{\prime}(x)+a(x) u(x) & =f(x), \quad x \in[-1,1] \\
u(-1) & =c
\end{aligned}
$$

$$
L \hat{\mathbf{u}}=\left(\hat{D}_{N}+\hat{S}_{N} \hat{M}_{N}[a]\right)\left[\begin{array}{c}
\hat{u}_{0} \\
\vdots \\
\hat{u}_{N}
\end{array}\right]=\hat{S}_{N}\left[\begin{array}{c}
\hat{f}_{0} \\
\vdots \\
\hat{f}_{N}
\end{array}\right]=\hat{S}_{N} \hat{\boldsymbol{f}}, \quad B \hat{\mathbf{u}}=\left[T_{0}(-1) \cdots T_{N}(-1)\right]\left[\begin{array}{c}
\hat{u}_{0} \\
\vdots \\
\hat{u}_{N}
\end{array}\right]=c
$$

Coefficient-based spectral methods

Ultraspherical spectral method [Olver \& Townsend, 2012]
Drake's summary of [Olver \& Townsend, 2012]:

CHIEBISTIT: ${ }^{\circ}$
 \rightarrow CHIEBTALITD

When to use values or coefficients?

- Multiplication is inherently local \checkmark in value space. Multiplication can be global X in coefficient space.

When to use values or coefficients?

- Multiplication is inherently local \checkmark in value space. Multiplication can be global X in coefficient space.
- Differentiation is inherently global X in value space. Differentiation can be local $\sqrt{ }$ in coefficient space.

When to use values or coefficients?

- Multiplication is inherently local \checkmark in value space. Multiplication can be global X in coefficient space.
- Differentiation is inherently global X in value space. Differentiation can be local \checkmark in coefficient space.
- Collocation is often ill-conditioned x.

Coefficient-based methods can be well-conditioned \checkmark.

When to use values or coefficients?

- Multiplication is inherently local \checkmark in value space. Multiplication can be global X in coefficient space.
- Differentiation is inherently global X in value space. Differentiation can be local \checkmark in coefficient space.
- Collocation is often ill-conditioned x.

Coefficient-based methods can be well-conditioned \checkmark.

- Coefficient-based methods can be sparse \checkmark. However, if the degree of variable coefficients is high this sparsity can be lost X.

When to use values or coefficients?

- Multiplication is inherently local \checkmark in value space. Multiplication can be global X in coefficient space.
- Differentiation is inherently global X in value space. Differentiation can be local \checkmark in coefficient space.
- Collocation is often ill-conditioned x.

Coefficient-based methods can be well-conditioned \checkmark.

- Coefficient-based methods can be sparse \checkmark. However, if the degree of variable coefficients is high this sparsity can be lost X.
- Best of both worlds: timestepping with IMEX schemes.

When to use values or coefficients?

- Multiplication is inherently local \checkmark in value space. Multiplication can be global X in coefficient space.
- Differentiation is inherently global X in value space. Differentiation can be local \checkmark in coefficient space.
- Collocation is often ill-conditioned x.

Coefficient-based methods can be well-conditioned \checkmark.

- Coefficient-based methods can be sparse \checkmark. However, if the degree of variable coefficients is high this sparsity can be lost X.
- Best of both worlds: timestepping with IMEX schemes.
- Solve linear terms (e.g., diffusion) implicitly using coefficients.

When to use values or coefficients?

- Multiplication is inherently local \checkmark in value space. Multiplication can be global X in coefficient space.
- Differentiation is inherently global X in value space. Differentiation can be local \checkmark in coefficient space.
- Collocation is often ill-conditioned x.

Coefficient-based methods can be well-conditioned \checkmark.

- Coefficient-based methods can be sparse \checkmark. However, if the degree of variable coefficients is high this sparsity can be lost x.
- Best of both worlds: timestepping with IMEX schemes.
- Solve linear terms (e.g., diffusion) implicitly using coefficients.
- Transform to values.

When to use values or coefficients?

- Multiplication is inherently local \checkmark in value space. Multiplication can be global X in coefficient space.
- Differentiation is inherently global X in value space.

Differentiation can be local \checkmark in coefficient space.

- Collocation is often ill-conditioned x.

Coefficient-based methods can be well-conditioned \checkmark.

- Coefficient-based methods can be sparse \checkmark. However, if the degree of variable coefficients is high this sparsity can be lost x.
- Best of both worlds: timestepping with IMEX schemes.
- Solve linear terms (e.g., diffusion) implicitly using coefficients.
- Transform to values.
- Evaluate nonlinear terms (e.g., reaction, advection) explicitly using values.

When to use values or coefficients?

- Multiplication is inherently local \checkmark in value space. Multiplication can be global X in coefficient space.
- Differentiation is inherently global X in value space.

Differentiation can be local \checkmark in coefficient space.

- Collocation is often ill-conditioned x.

Coefficient-based methods can be well-conditioned \checkmark.

- Coefficient-based methods can be sparse \checkmark. However, if the degree of variable coefficients is high this sparsity can be lost x.
- Best of both worlds: timestepping with IMEX schemes.
- Solve linear terms (e.g., diffusion) implicitly using coefficients.
- Transform to values.
- Evaluate nonlinear terms (e.g., reaction, advection) explicitly using values.
- Transform to coefficients.

Software for spectral methods

- MATLAB? Chebfun. (chebfun.org)
- Trefethen, Hale, Driscoll, Austin, Aurentz, Townsend, ...
- Python? Dedalus. (dedalus-project.org)
- Burns, Vasil, Oishi, Lecoanet, ...
\square Julia? ApproxFun. (github.com/JuliaApproximation/ApproxFun.jl)
- Olver, Slevinsky, Townsend, ...

$\sqrt{c} h$ e b fun

Applications

High Reynolds number flows
[Dedalus Project, 2019]

High frequency scattering
[Slevinsky \& Olver, 2017]

I didn't mention

- Simple 2D and 3D geometries
- Use tensor products of 1D spectral ideas or special basis functions (spherical harmonics, Zernike polynomials, Bessel functions, double Fourier, etc.).
- Orszag, Trefethen, Driscoll, Townsend, Olver, Slevinsky, Hale, Hashemi, Burns, Vasil, ...
- Meshes and element methods
\downarrow Use piecewise high-order patches each of which are each spectral.
- Sherwin, Fisher, Patera, Hesthaven, Warburton, Persson, Kolev, Ham, Mitchell, Martinsson, Gillman, ...
- Integral equations
- Same ideas apply. Use global spectral or piecewise spectral on boundaries.
- Greengard, Rokhlin, Barnett, Martinsson, Gillman, Rachh, Malhotra, Kaye, Jiang, Veerapaneni, Vico, O'Neil, Epstein, ...

Lots of spectral folks here at Flatiron!
Talk to us if your problem might be suitable for a spectral method.

