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What is a spectral method?

Approximation theory

Definition: A numerical method is called a spectral method if its convergence
rate is as fast as the smoothness of the answer allows.

m-differentiable?  “algebraic” / “mth order” — O(N~")
co-differentiable?  “superalgebraic” / “subgeometric’ — O(N~™) for every m > 0
analytic? “geometric” / “exponential” — O(c~N) for some ¢ > 1
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Such accuracy is called spectral accuracy.
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Representing functions on a computer

Values or coefficients?

Suppose we are approximating a function u(x) defined on [-1, 1]. How should we discretize u
so that we may compute with it to spectral accuracy?
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Representing functions on a computer

Values or coefficients?

Suppose we are approximating a function u(x) defined on [-1, 1]. How should we discretize u
so that we may compute with it to spectral accuracy?

Values at grid points Coefficients of basis functions

Lagrange polynomials orthogonal polynomials

N N
w00 = Y w0 = ux) = Y )«

k=0 k=0
u(xx) \ (u, )

@ ftantorms \&\\%

“nodal”, “pseudospectral”, “collocation” “modal”, “spectral”’, “frequency domain”




Representing functions on a computer

Values or coefficients?
What grid points {xk} or basis functions {¢x} should we use on [-1,1]?
Periodic? Equispaced nodes / Fourier series
2k :
Xi = -1 + =, ¢k(X) — emkx
N
Non-periodic? Chebyshev nodes / Chebyshev series  (or others — just need to avoid Runge phenomenon)

Xk = cos(kwn), G (x) = Tk(x) = cos(k cos™" x)

Image by Keaton Burns




Numerical computing with functions
Differentiation, integration, evaluation, convolution, ...

Once we have this representation, many operations are easy — just apply the operation to
each term in the sum.

To get a flavor of each representation, let’s focus on differentiation using both values and
coefficients.

We'll look at a traditional take and a modern take on each.




Value-based spectral methods

N
u(x) = Z Uk Lk (X)
k=0




Value-based spectral methods

Differentiation

Given values on a grid, what are the values of the derivative on that same grid?

G-0-0—0—0—0—0—0—0—0—0—0—0—0-080 (Chebyshev points)
Xo Xk XN




Value-based spectral methods

Differentiation

Given values on a grid, what are the values of the derivative on that same grid?

U(Xk)
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Value-based spectral methods

Differentiation

Given values on a grid, what are the values of the derivative on that same grid?

U (Xk)

Lito Ukli(x)
u (XO) le\io ukf;((X)
u'(Xn)
Differentiation {xx} — {xx} is dense:

N N
Ug) =Y ukli(x) = Y uile(x)
k=0 k=0

The derivative at the k-th point depends on the values of u at all points.

[Fornberg, 1998], [Trefethen, 2000]
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Value-based spectral methods

Differentiation

Given values on a grid, what are the values of the derivative on that same grid?

U’ (Xk)

YL Ukli(x)
Yo Ukl (x)

U’ (Xn)

u'(xo)

We can write down the dense matrix Dy € RINtDX(N+1) gych that

Such a matrix is called a differentiation matrix.
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Value-based spectral methods

Rectangular differentiation

Modern take: [Driscoll & Hale, 2015]
Differentiating a degree-N polynomial yields a degree-(N — 1) polynomial.

\ s
i\ b
Toby Driscoll Nick Hale
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Value-based spectral methods

Rectangular differentiation

Modern take: [Driscoll & Hale, 2015]
Differentiating a degree-N polynomial yields a degree-(N — 1) polynomial.
Therefore, Dy should map values on an (N + 1)-point grid to values on an N-point grid.

Toby Drlscoll Nick Hale
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Value-based spectral methods

Rectangular differentiation

Modern take: [Driscoll & Hale, 2015]
Differentiating a degree-N polynomial yields a degree-(N — 1) polynomial.
Therefore, Dy should map values on an (N + 1)-point grid to values on an N-point grid.
That is, Dy should be rectangular: Dy € RN<(N+1).

If Pn—1,n is @ resampling matrix from the (N + 1)-point grid to the N-point grid, then
Dn = Pn-1,nDn.

Toby Drlscoll Nick Hale
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Value-based spectral methods

Rectangular differentiation

Modern take: [Driscoll & Hale, 2015]
Differentiating a degree-N polynomial yields a degree-(N — 1) polynomial.
Therefore, Dy should map values on an (N + 1)-point grid to values on an N-point grid.
That is, Dy should be rectangular: Dy € RN<(N+1).
If Pn—1,n is @ resampling matrix from the (N + 1)-point grid to the N-point grid, then
Dn = Pn-1,nDn.

Why is this useful? Boundary conditions.

Toby Drlscoll Nick Hale
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Value-based spectral methods

Rectangular collocation [Driscoll & Hale, 2015]

Consider the ODE

U(x)+a(x)u(x)=1f(x), xel[-1,1]
u-1)=c




Value-based spectral methods

Rectangular collocation [Driscoll & Hale, 2015]
Consider the ODE
U(x)+a(x)u(x)=1f(x), xel[-1,1]
u-1)=c

a(xo) } [U(XO)] lf(XO)]
a(xn)| Jlu(xn)]  [f(xn)

u(xo)

Traditional spectral collocation:

LU[DN+

Bu:[1 0 - o] =c

U(xn)




Value-based spectral methods

Rectangular collocation [Driscoll & Hale, 2015]

Consider the ODE
U(x)+a(x)u(x)=1f(x), xel[-1,1]
u-1)=c
Traditional spectral collocation:
a(xo) u(xo) f(xo)
Lu=|Dn+ N el N e |
a(xn)| Jlu(xn)]  Lf(xn)
u(xo)
Bu=[1 0 - 0] =c
u(xn)
B c
[L u= [f] System is rectangular — one too many rows.

Delete a row. But which one...
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Value-based spectral methods

Rectangular collocation [Driscoll & Hale, 2015]

Consider the ODE

U(x)+a(x)u(x)=1f(x), xel[-1,1]
u-1)=c

Traditional spectral collocation:

Lu=|Dn+ =] | =
a(xn)] Jlu(xn)]  [F(xn)
u(Xo)

Bu=[1 0 - 0]| : |=c
u(xn)

B c
[L(1 ‘N, ) u= [f(.' :N)] System is rectangular — one too many rows.
- Delete a row. But which one...
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Value-based spectral methods

Rectangular collocation [Driscoll & Hale, 2015]

Consider the ODE
U(x)+a(x)u(x)=1f(x), xel[-1,1]
u-1)=c

Rectangular spectral collocation:

a(xp) u(xo) f(xo)
a(xn)| | lu(xn) f(xn)
u(Xo)
Bu=[1 0 --- 0 —c
u(xn)
B c
[PN—LNL] u= [PN—LNf] System is square.

We have precisely the space we need for B.
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Value-based spectral methods

Rectangular collocation [Driscoll & Hale, 2015]

Consider the ODE
U(x)+a(x)u(x)=1f(x), xel[-1,1]
u-1)=c
Rectangular spectral collocation:
a(xo) u(xo) f(xo)
a(xn)| | lu(xn) f(xn)
u(Xo)
Bu=[1 0 --- 0 =c
u(xn)

Cc
= [PN ; Nf] System is square.
T We have precisely the space we need for B.




Value-based spectral methods

Rectangular collocation [Driscoll & Hale, 2015]

Drake’s summary of [Driscoll & Hale, 2015]:

SQUARE

IIIFFEIIIATIIIN
RECTANGULAR




Coefficient-based spectral methods




Coefficient-based spectral methods

Fourier differentiation

Given coefficients in a basis, what are the coefficients of the derivative in that same basis?




Coefficient-based spectral methods

Fourier differentiation

Given coefficients in a basis, what are the coefficients of the derivative in that same basis?

Suppose u(x) is periodic on [-1, 1]. Let’s represent u using a Fourier series, so ¢ (x) = e™:

N/2
U(X): Z akemkx
k=-N/2




Coefficient-based spectral methods

Fourier differentiation

Given coefficients in a basis, what are the coefficients of the derivative in that same basis?

Suppose u(x) is periodic on [-1, 1]. Let’s represent u using a Fourier series, so ¢ (x) = e™:

N/2
U(X): Z akemkx
k=-N/2
Differentiation {e’““x} - {e’“"x} is sparse:
N/2 N/2 N/2
U= Y tkpp() = Y Gkinke™ = Y i e
k=—N/2 k=—N/2 k=—N/2

The k-th coefficient of the derivative depends only on the k-th coefficient of u.
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Coefficient-based spectral methods

Fourier differentiation

Given coefficients in a basis, what are the coefficients of the derivative in that same basis?

Suppose u(x) is periodic on [-1, 1]. Let’s represent u using a Fourier series, so ¢ (x) = e™:
N/2
U(X) — Z ak elnkx
k=-N/2

We can write down the diagonal matrix Dy € RIN+D*(N+1) sych that

A~ ~y
U-nj2 UZnj2

N

DN : =

~ ~y
Uny2 Uyny2




Coefficient-based spectral methods

Chebyshev differentiation

Given coefficients in a basis, what are the coefficients of the derivative in that same basis?




Coefficient-based spectral methods

Chebyshev differentiation

Given coefficients in a basis, what are the coefficients of the derivative in that same basis?

Suppose u(x) is non-periodic on [-1, 1]. Let’s represent u using a Chebyshev series, so

P (X) = T(x):

N
u(x) =Y, 0k Ti(x)
k=0




Coefficient-based spectral methods

Chebyshev differentiation

Given coefficients in a basis, what are the coefficients of the derivative in that same basis?

Suppose u(x) is non-periodic on [-1, 1]. Let’s represent u using a Chebyshev series, so

Pk (X) = Tk(X): N
u(x) =Y, 0k Ti(x)
k=0
Differentiation { Tx(x)} — {Tk(x)} is dense:

T () 2k Z/ odd Ti(x), k even,
2k Z/ oven 1i(X) =1, k odd.

The k-th coefficient of the derivative depends on many coefficients of u.




Coefficient-based spectral methods

Ultraspherical differentiation

Given coefficients in a basis, what are the coefficients of the derivative in that same basis?

Suppose u(x) is non-periodic on [-1, 1]. Let’s represent u using a Chebyshev series, so

Pk (x) = Ti(x):
N
u(x) =Y, 0k Ti(x)
k=0
Modern take: Let differentiation change the basis. [Olver & Townsend, 2012]
Tix)=kC(x),  Tr(x)=2kCP(x), Ty (x)=8kCZ(x),

Then differentiation { Tk (x)} — {CIEA)(X)} is sparse.

N 4
Sheehan Olver Alex Townsend
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Coefficient-based spectral methods

Ultraspherical spectral method [Olver & Townsend, 2012]

Differentiation:

Ti(x)=kC (x),  Dn= 3
Conversion:
TK(X) = %(C[£1) - C;((I)z)/ éN =

Multiplication:

3

a(x)~ Y acTk(x), Ti(x)Tk(x)= %(Tu_m + T,-+k), m-banded operation
0

x
Il

14/20



Coefficient-based spectral methods

Ultraspherical spectral method [Olver & Townsend, 2012]

Consider the ODE

U(x)+a(x)u(x)=1f(x), xel[-1,1]
u-1)=c




Coefficient-based spectral methods

Ultraspherical spectral method [Olver & Townsend, 2012]

Consider the ODE
U(x)+a(x)u(x)=1f(x), xel[-1,1]

u-1)=c

L= (f)N + stN[a]) — &\

S

un




Coefficient-based spectral methods

Ultraspherical spectral method [Olver & Townsend, 2012]

Consider the ODE
U +a()u(x) = f(x), xe[-1,1]
u-1)=c
O b "
L= (B Sufial)| £ |~ Su|: |- 8, Ba=[To(-1) - TN(_1)]| 3 ‘ .
N fy o

Bl . c .
u=1x~ System is rectangular — one too many rows.
Last row is all zeros. Delete it.




Coefficient-based spectral methods

Ultraspherical spectral method [Olver & Townsend, 2012]

Consider the ODE
U(x)+a(x)u(x)=1f(x), xel[-1,1]
u-1)=c
Clo lfo aO
L= (DN+SNI\7IN[a]) =8| =8 Ba=[To(-1) - Tn(-1)]| : |=¢
aN If\N C’N
[ i B ] ] = [A o c ] System is rectangular — one too many rows.
L(O'N_1’ ) SN-1 f(OZN_1) Last row is all zeros. Delete it.




Coefficient-based spectral methods

Ultraspherical spectral method [Olver & Townsend, 2012]

Consider the ODE
U +a()u(x) = f(x), xe[-1,1]
u-1)=c
O b "
L= (B Sufial)| £ |~ Su|: |- 8, Ba=[To(-1) - TN(_1)]| 3 ‘ .
N fy o

= [A A c ] System is rectangular — one too many rows.
SN-1 f(O'N_1 ) Last row is all zeros. Delete it.




Coefficient-based spectral methods

Ultraspherical spectral method [Olver & Townsend, 2012]

Drake’s summary of [Olver & Townsend, 2012]:

ULTRASRHERICAL




When to use values or coefficients?

Multiplication is inherently local v in value space.
Multiplication can be global X in coefficient space.
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When to use values or coefficients?

Multiplication is inherently local v in value space.
Multiplication can be global X in coefficient space.

Differentiation is inherently global x in value space.
Differentiation can be local v in coefficient space.

Collocation is often ill-conditioned X.
Coefficient-based methods can be well-conditioned v'.

Coefficient-based methods can be sparse v'.
However, if the degree of variable coefficients is high this sparsity can be lost X.

Best of both worlds: timestepping with IMEX schemes.
Solve linear terms (e.g., diffusion) implicitly using coefficients.
Transform to values.
Evaluate nonlinear terms (e.g., reaction, advection) explicitly using values.
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When to use values or coefficients?

Multiplication is inherently local v in value space.
Multiplication can be global X in coefficient space.

Differentiation is inherently global x in value space.
Differentiation can be local v in coefficient space.

Collocation is often ill-conditioned X.
Coefficient-based methods can be well-conditioned v'.

Coefficient-based methods can be sparse v'.
However, if the degree of variable coefficients is high this sparsity can be lost X.

Best of both worlds: timestepping with IMEX schemes.
Solve linear terms (e.g., diffusion) implicitly using coefficients.
Transform to values.
Evaluate nonlinear terms (e.g., reaction, advection) explicitly using values.
Transform to coefficients.
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Software for spectral methods

MATLAB? Chebfun. (chebfun.org)

Trefethen, Hale, Driscoll, Austin, Aurentz, Townsend, ...

Python? Dedalus. (dedalus-project.org)
Burns, Vasil, Oishi, Lecoanet, ...

Julia? ApproxFun. (github.com/JuliaApproximation/ApproxFun. jl)
Olver, Slevinsky, Townsend, ...




Applications

’ X s g
High Reynolds number flows Very high order element methods
[Dedalus Project, 2019] [F., Hale, & Townsend, 2020]

™

D () —————
H H
' A
[} ]
[y 1 -
kY ’ -7 e
. ) . ’ A
High frequency scattering AN - R4 o
[Slevinsky & Olver, 2017] Cell polarization

[F., Miller, Greengard, Shvartsman, in prep.]




| didn’t mention

Simple 2D and 3D geometries

Use tensor products of 1D spectral ideas or special basis functions (spherical
harmonics, Zernike polynomials, Bessel functions, double Fourier, etc.).
Orszag, Trefethen, Driscoll, Townsend, Olver, Slevinsky, Hale, Hashemi, Burns, Vasil, ...

Meshes and element methods

Use piecewise high-order patches each of which are each spectral.
Sherwin, Fisher, Patera, Hesthaven, Warburton, Persson, Kolev, Ham, Mitchell, Martinsson, Gillman, ...

Integral equations

Same ideas apply. Use global spectral or piecewise spectral on boundaries.
Greengard, Rokhlin, Barnett, Martinsson, Gillman, Rachh, Malhotra, Kaye, Jiang, Veerapaneni, Vico,
O'Neil, Epstein, ...

Lots of spectral folks here at Flatiron!
Talk to us if your problem might be suitable for a spectral method.
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