## Fast Poisson solvers for spectral methods



## Dan Fortunato Harvard

IMA Leslie Fox Prize Meeting
 June 24, 2019

## Introduction <br> A long-standing question

Consider Poisson's equation on $[-1,1]^{2}$ with homogeneous Dirichlet conditions,

$$
u_{x x}+u_{y y}=f, \quad(x, y) \in[-1,1]^{2}, \quad u( \pm 1, \cdot)=u(\cdot, \pm 1)=0 .
$$

The classic fast Poisson solver using finite differences:

$$
\underbrace{K X+X K^{\top}=F,}_{\text {solve with DST-I,O( } \left.n^{2} \log n\right)} \quad K=\frac{1}{h^{2}}\left[\begin{array}{cccc}
2 & -1 & & \\
-1 & \ddots & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & 2
\end{array}\right]
$$

## Introduction

## A long-standing question

Consider Poisson's equation on $[-1,1]^{2}$ with homogeneous Dirichlet conditions,

$$
u_{x x}+u_{y y}=f, \quad(x, y) \in[-1,1]^{2}, \quad u( \pm 1, \cdot)=u(\cdot, \pm 1)=0 .
$$

The classic fast Poisson solver using finite differences:

$$
\underbrace{K X+X K^{\top}=F,}_{\text {olve with DST-I, } O\left(n^{2} \log n\right)} \quad K=\frac{1}{h^{2}}\left[\begin{array}{cccc}
-1 & \ddots & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & 2
\end{array}\right]
$$



Gene Golub

- Based on structured eigenvectors
- Complexity increases with order of accuracy


## Introduction

## A long-standing question

Consider Poisson's equation on $[-1,1]^{2}$ with homogeneous Dirichlet conditions,

$$
u_{x x}+u_{y y}=f, \quad(x, y) \in[-1,1]^{2}, \quad u( \pm 1, \cdot)=u(\cdot, \pm 1)=0 .
$$

The classic fast Poisson solver using finite differences:

$$
\underbrace{K X+X K^{\top}=F}_{\text {with D.ST-I } O\left(n^{2} \log n\right)}
$$

solve with DST-I, $O\left(n^{2} \log n\right)$


- Based on structured eigenvectors
- Complexity increases with order of accuracy


## Introduction

## A long-standing question

Consider Poisson's equation on $[-1,1]^{2}$ with homogeneous Dirichlet conditions,

$$
u_{x x}+u_{y y}=f, \quad(x, y) \in[-1,1]^{2}, \quad u( \pm 1, \cdot)=u(\cdot, \pm 1)=0 .
$$

The classic fast Poisson solver using finite differences:

$$
\underbrace{K X+X K^{T}=F,}_{\text {solve with DST-I, } O\left(n^{2} \log n\right)} \quad K=\frac{1}{h^{2}}\left[\begin{array}{cccc}
2 & -1 & & \\
-1 & \ddots & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & 2
\end{array}\right]
$$

Can we make a spectrally-accurate Poisson solver with $O\left(n^{2} \log n\right)$ complexity?

## A sparse identity

The ultraspherical polynomials

## Dirichlet on $[-1,1] \longleftrightarrow$ Pick a basis that vanishes at $\pm 1$

## The classical orthogonal polynomials, $f_{k}$, satisfy

$$
A(x) f_{k}^{\prime \prime}(x)+B(x) f_{k}^{\prime}(x)=q_{k} f_{k}(x), \quad x \in[-1,1] .
$$

## A sparse identity

The ultraspherical polynomials

## Dirichlet on $[-1,1] \longleftrightarrow$ Pick a basis that vanishes at $\pm 1$

The classical orthogonal polynomials, $f_{k}$, satisfy

$$
A(x) f_{k}^{\prime \prime}(x)+B(x) f_{k}^{\prime}(x)=q_{k} f_{k}(x), \quad x \in[-1,1] .
$$

## A sparse identity

## The ultraspherical polynomials

## Dirichlet on $[-1,1] \longleftrightarrow$ Pick a basis that vanishes at $\pm 1$

The ultraspherical polynomials of parameter $\lambda>0, C_{k}^{(\lambda)}$, satisfy [NIST DLMF, 18.8.1]

$$
\left(1-x^{2}\right) C_{k}^{(\lambda)^{\prime \prime}}(x)-(2 \lambda+1) x C_{k}^{(\lambda)^{\prime}}(x)=-k(k+2 \lambda) C_{k}^{(\lambda)}(x), \quad x \in[-1,1] .
$$

## A sparse identity

## The ultraspherical polynomials

## Dirichlet on $[-1,1] \longleftrightarrow$ Pick a basis that vanishes at $\pm 1$

The ultraspherical polynomials of parameter $\lambda>0, C_{k}^{(\lambda)}$, satisfy [NIST DLMF, 18.8.1]

$$
\left(1-x^{2}\right) C_{k}^{(\lambda)^{\prime \prime}}(x)-(2 \lambda+1) x C_{k}^{(\lambda)^{\prime}}(x)=-k(k+2 \lambda) C_{k}^{(\lambda)}(x), \quad x \in[-1,1] .
$$

The second derivative of $\left(1-x^{2}\right) C_{k}^{(\lambda)}(x)$ is given by

$$
\frac{\partial^{2}}{\partial x^{2}}\left[\left(1-x^{2}\right) C_{k}^{(\lambda)}(x)\right]=\left(1-x^{2}\right) C_{k}^{(\lambda)^{\prime \prime}}(x)-4 x C_{k}^{(\lambda)}(x)-2 C_{k}^{(\lambda)}(x)
$$

## A sparse identity

## The ultraspherical polynomials

## Dirichlet on $[-1,1] \longleftrightarrow$ Pick a basis that vanishes at $\pm 1$

The ultraspherical polynomials of parameter $\lambda>0, C_{k}^{(\lambda)}$, satisfy [NIST DLMF, 18.8.1]

$$
\left(1-x^{2}\right) C_{k}^{(\lambda)^{\prime \prime}}(x)-(2 \lambda+1) x C_{k}^{(\lambda)^{\prime}}(x)=-k(k+2 \lambda) C_{k}^{(\lambda)}(x), \quad x \in[-1,1] .
$$

The second derivative of $\left(1-x^{2}\right) C_{k}^{(\lambda)}(x)$ is given by

$$
\frac{\partial^{2}}{\partial x^{2}}\left[\left(1-x^{2}\right) C_{k}^{(\lambda)}(x)\right]=\left(1-x^{2}\right) C_{k}^{(\lambda)^{\prime \prime}}(x)-4 x C_{k}^{(\lambda)^{\prime}}(x)-2 C_{k}^{(\lambda)}(x) .
$$

## A sparse identity

The ultraspherical polynomials

## Dirichlet on $[-1,1] \longleftrightarrow$ Pick a basis that vanishes at $\pm 1$

The ultraspherical polynomials of parameter $\lambda>0, C_{k}^{(\lambda)}$, satisfy [NIST DLMF, 18.8.1]

$$
\left(1-x^{2}\right) C_{k}^{(\lambda)^{\prime \prime}}(x)-(2 \lambda+1) x C_{k}^{(\lambda)^{\prime}}(x)=-k(k+2 \lambda) C_{k}^{(\lambda)}(x), \quad x \in[-1,1] .
$$

The second derivative of $\left(1-x^{2}\right) C_{k}^{(\lambda)}(x)$ is given by

$$
\frac{\partial^{2}}{\partial x^{2}}\left[\left(1-x^{2}\right) C_{k}^{(\lambda)}(x)\right]=\left(1-x^{2}\right) C_{k}^{(\lambda)^{\prime \prime}}(x)-4 x C_{k}^{(\lambda)^{\prime}}(x)-2 C_{k}^{(\lambda)}(x) .
$$

$$
\text { Idea: Choose } \lambda=\frac{3}{2}
$$

## A sparse identity

The ultraspherical polynomials

$$
\frac{\partial^{2}}{\partial x^{2}}\left[\left(1-x^{2}\right) C_{k}^{(3 / 2)}(x)\right]=-(k(k+3)+2) C_{k}^{(3 / 2)}(x)
$$

$C_{k}^{(3 / 2)}(x)$ is an eigenfunction of the differential operator $u \mapsto \frac{\partial^{2}}{\partial x^{2}}\left[\left(1-x^{2}\right) u\right]$

## A sparse identity

## The ultraspherical polynomials

$$
\frac{\partial^{2}}{\partial x^{2}}\left[\left(1-x^{2}\right) C_{k}^{(3 / 2)}(x)\right]=-(k(k+3)+2) C_{k}^{(3 / 2)}(x) .
$$

$$
C_{k}^{(3 / 2)}(x) \text { is an eigenfunction of the differential operator } u \mapsto \frac{\partial^{2}}{\partial x^{2}}\left[\left(1-x^{2}\right) u\right]
$$

$$
\begin{aligned}
\nabla^{2}\left[\left(1-y^{2}\right)\left(1-x^{2}\right) C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x)\right]= & -(j(j+3)+2)\left(1-x^{2}\right) C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x) \\
& -(k(k+3)+2)\left(1-y^{2}\right) C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x)
\end{aligned}
$$

Therefore, represent the solution in the basis

$$
u(x, y) \approx \sum_{j=0}^{m-1} \sum_{k=0}^{n-1} X_{j k}\left(1-y^{2}\right)\left(1-x^{2}\right) C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x), \quad(x, y) \in[-1,1]^{2}
$$

## A sparse identity

 Does it diagonalize Poisson?$$
\nabla^{2} u=f
$$

## A sparse identity

## Does it diagonalize Poisson?

$$
\nabla^{2}\left[\sum_{j, k} X_{j k}\left(1-y^{2}\right)\left(1-x^{2}\right) C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x)\right]=\sum_{j, k} F_{j k} C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x)
$$

## A sparse identity

Does it diagonalize Poisson?

$$
\nabla^{2}\left[\sum_{j, k} X_{j k}\left(1-y^{2}\right)\left(1-x^{2}\right) C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x)\right]=\sum_{j, k} F_{j k} C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x)
$$

We know the action of $\nabla^{2}$ on this basis:

$$
\begin{aligned}
\nabla^{2}\left[\left(1-y^{2}\right)\left(1-x^{2}\right) C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x)\right]= & -(k(k+3)+2)\left(1-y^{2}\right) C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x) \\
& -(j(j+3)+2)\left(1-x^{2}\right) C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x)
\end{aligned}
$$

## A sparse identity

## Does it diagonalize Poisson?

$$
M X D^{T}+D X M^{T}=F
$$

We know the action of $\nabla^{2}$ on this basis:

$$
\begin{aligned}
\nabla^{2}\left[\left(1-y^{2}\right)\left(1-x^{2}\right) C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x)\right]= & -(k(k+3)+2)\left(1-y^{2}\right) C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x) \\
& -(j(j+3)+2)\left(1-x^{2}\right) C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x)
\end{aligned}
$$

## A sparse identity

## Does it diagonalize Poisson?

$$
M X D^{T}+D X M^{T}=F
$$

We know the action of $\nabla^{2}$ on this basis:

$$
\begin{aligned}
\nabla^{2}\left[\left(1-y^{2}\right)\left(1-x^{2}\right) C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x)\right]= & \overbrace{-(k(k+3)+2)}^{\text {scale }}\left(1-y^{2}\right) C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x) \\
& -(j(j+3)+2)\left(1-x^{2}\right) C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x)
\end{aligned}
$$

## A sparse identity

## Does it diagonalize Poisson?

$$
M X D^{T}+D X M^{T}=F
$$

We know the action of $\nabla^{2}$ on this basis:

$$
\begin{aligned}
\nabla^{2}\left[\left(1-y^{2}\right)\left(1-x^{2}\right) C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x)\right]= & -(k(k+3)+2) \overbrace{\left(1-y^{2}\right)}^{\text {multiply }} C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x) \\
& -(j(j+3)+2)\left(1-x^{2}\right) C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x)
\end{aligned}
$$

## A sparse identity

## Does it diagonalize Poisson?

$$
M X D^{T}+D X M^{T}=F
$$

We know the action of $\nabla^{2}$ on this basis:

$$
\begin{aligned}
\nabla^{2}\left[\left(1-y^{2}\right)\left(1-x^{2}\right) C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x)\right]= & -(k(k+3)+2)\left(1-y^{2}\right) C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x) \\
& \underbrace{-(j(j+3)+2)\left(1-x^{2}\right) C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x)}_{\text {scale }}
\end{aligned}
$$

## A sparse identity

## Does it diagonalize Poisson?

$$
M X D^{T}+D X M^{\top}=F
$$

We know the action of $\nabla^{2}$ on this basis:

$$
\begin{aligned}
\nabla^{2}\left[\left(1-y^{2}\right)\left(1-x^{2}\right) C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x)\right]= & -(k(k+3)+2)\left(1-y^{2}\right) C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x) \\
& -(j(j+3)+2)(\underbrace{\left.1-x^{2}\right)}_{\text {multiply }} C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x)
\end{aligned}
$$

## A sparse identity

## Does it diagonalize Poisson?



$$
\begin{aligned}
\nabla^{2}\left[\left(1-y^{2}\right)\left(1-x^{2}\right) C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x)\right]= & -(k(k+3)+2)\left(1-y^{2}\right) C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x) \\
& -(j(j+3)+2)\left(1-x^{2}\right) C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x)
\end{aligned}
$$

## A sparse identity

## Does it diagonalize Poisson?

$$
A X-X B=D^{-1} F D^{-1} \quad \begin{array}{ll}
A & =D^{-1} M \\
B & =-M^{T} D^{-1}
\end{array}
$$

We know the action of $\nabla^{2}$ on this basis:

$$
\begin{aligned}
\nabla^{2}\left[\left(1-y^{2}\right)\left(1-x^{2}\right) C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x)\right]= & -(k(k+3)+2)\left(1-y^{2}\right) C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x) \\
& -(j(j+3)+2)\left(1-x^{2}\right) C_{j}^{(3 / 2)}(y) C_{k}^{(3 / 2)}(x)
\end{aligned}
$$

## A sparse identity

Does it diagonalize Poisson?

$$
\begin{array}{rl}
A X-X B=D^{-1} F D^{-1} & A
\end{array}=D^{-1} M,
$$



## A pentadiagonal Sylvester equation



## The alternating direction implicit (ADI) method

 Solving Sylvester equations$$
A X-X B=F \quad A, B, F \in \mathbb{C}^{n \times n}
$$

- Based on structured eigenvalues


Donald Peaceman


Henry Rachford

The alternating direction implicit (ADI) method Solving Sylvester equations

$$
A X-X B=F \quad A, B, F \in \mathbb{C}^{n \times n}
$$

- Based on structured eigenvalues



Donald Peaceman


Henry Rachford

## The alternating direction implicit (ADI) method

 Solving Sylvester equations$$
A X-X B=F \quad A, B, F \in \mathbb{C}^{n \times n}
$$

set $X_{0}:=0$
choose shift parameters $p_{j}, q_{j} \in \mathbb{C}$
for $j=0,1, \ldots, J-1$
solve $X_{j+1 / 2}\left(B-p_{j} I\right)=F-\left(A-p_{j} I\right) X_{j}$
solve $\left(A-q_{j} l\right) X_{j+1}=F-X_{j+1 / 2}\left(B-q_{j} l\right)$

## The alternating direction implicit (ADI) method

 Solving Sylvester equations$$
A X-X B=F \quad A, B, F \in \mathbb{C}^{n \times n}
$$

set $X_{0}:=0$
choose shift parameters $p_{j}, q_{j} \in \mathbb{C}$
for $j=0,1, \ldots, J-1$
solve $X_{j+1 / 2}\left(B-p_{j} I\right)=F-\left(A-p_{j} I\right) X_{j}$
solve $\left(A-q_{j} l\right) X_{j+1}=F-X_{j+1 / 2}\left(B-q_{j} l\right)$

1. What shifts $p_{j}, q_{j}$ should we choose?

## The alternating direction implicit (ADI) method

 Solving Sylvester equations$$
A X-X B=F \quad A, B, F \in \mathbb{C}^{n \times n}
$$

set $X_{0}:=0$
choose shift parameters $\boldsymbol{p}_{j}, \boldsymbol{q}_{j} \in \mathbb{C}$
for $j=0,1, \ldots, J-1$
solve $X_{j+1 / 2}\left(B-p_{j} I\right)=F-\left(A-p_{j} I\right) X_{j}$
solve $\left(A-q_{j} I\right) X_{j+1}=F-X_{j+1 / 2}\left(B-q_{j} I\right)$

1. What shifts $p_{j}, q_{j}$ should we choose?
2. How many iterations $J$ do we need?

## The alternating direction implicit (ADI) method

 Solving Sylvester equations$$
A X-X B=F \quad A, B, F \in \mathbb{C}^{n \times n}
$$

set $X_{0}:=0$
choose shift parameters $p_{j}, q_{j} \in \mathbb{C}$
for $j=0,1, \ldots, J-1$
solve $X_{j+1 / 2}\left(B-p_{j} I\right)=F-\left(A-p_{j} I\right) X_{j}$
solve $\left(A-q_{j} I\right) X_{j+1}=F-X_{j+1 / 2}\left(B-q_{j} I\right)$

1. What shifts $p_{j}, q_{j}$ should we choose?
2. How many iterations $J$ do we need?
3. What is the cost of each iteration?

## ADI as a fast direct solver

Three requirements

$$
A X-X B=F \quad A, B, F \in \mathbb{C}^{n \times n}
$$

Three requirements on $A$ and $B$ will help us answer those three questions:

P1. $A$ and $B$ are normal matrices.
P2. There are real, disjoint intervals such that $\sigma(A) \subset[a, b], \sigma(B) \subset[c, d]$.
P3. For any $p \in \mathbb{C},(A-p l) x=f$ and $(B-p l) x=f$ can be solved in $O(n)$ operations.

## ADI as a fast direct solver

## Normal matrices

P1. $A$ and $B$ are normal matrices.
Then there is a bound on $\left\|X-X_{J}\right\|_{2}$ based on the spectra $\sigma(A), \sigma(B)$ and the chosen shifts $p_{0}, \ldots, p_{J-1}$ and $q_{0}, \ldots, q_{J-1}$ :

$$
\frac{\left\|X-X_{J}\right\|_{2}}{\|X\|_{2}} \leq \frac{\sup _{z \in \sigma(A)}|r(z)|}{\inf _{z \in \sigma(B)}|r(z)|}, \quad r(z)=\frac{\prod_{j=0}^{J-1}\left(z-p_{j}\right)}{\prod_{j=0}^{J-1}\left(z-q_{j}\right)} .
$$

Goal: choose shifts $p_{j}, q_{j}$ so that the rational function $r(z)$ makes the bound as small as possible:


## ADI as a fast direct solver

## Normal matrices

## P1. $A$ and $B$ are normal matrices.

Then there is a bound on $\left\|X-X_{J}\right\|_{2}$ based on the spectra $\sigma(A), \sigma(B)$ and the chosen shifts $p_{0}, \ldots, p_{J-1}$ and $q_{0}, \ldots, q_{J-1}$ :

$$
\frac{\left\|X-X_{j}\right\|_{2}}{\|X\|_{2}} \leq \frac{\sup _{z \in \sigma(A)}|r(z)|}{\inf _{z \in \sigma(B)}|r(z)|}, \quad r(z)=\frac{\prod_{j=0}^{J-1}\left(z-p_{j}\right)}{\prod_{j=0}^{J-1}\left(z-q_{j}\right)} .
$$

Goal: choose shifts $p_{j}, q_{j}$ so that the rational function $r(z)$ makes the bound as small as possible:

$$
\frac{\sup _{z \in \sigma(A)}|r(z)|}{\inf _{z \in \sigma(B)}|r(z)|}=\inf _{s \in \mathfrak{R}_{J, J}} \frac{\sup _{z \in \sigma(A)}|s(z)|}{\inf _{z \in \sigma(B)}|s(z)|}
$$



## ADI as a fast direct solver

## Normal matrices

## P1. $A$ and $B$ are normal matrices.

Then there is a bound on $\left\|X-X_{J}\right\|_{2}$ based on the spectra $\sigma(A), \sigma(B)$ and the chosen shifts $p_{0}, \ldots, p_{J-1}$ and $q_{0}, \ldots, q_{J-1}$ :

$$
\frac{\left\|X-X_{J}\right\|_{2}}{\|X\|_{2}} \leq Z_{J}(\sigma(A), \sigma(B)), \quad r(z)=\frac{\prod_{j=0}^{J-1}\left(z-p_{j}\right)}{\prod_{j=0}^{J-1}\left(z-q_{j}\right)}
$$

Goal: choose shifts $p_{j}, q_{j}$ so that the rational function $r(z)$ makes the bound as small as possible:

$$
\underbrace{Z_{J}(\sigma(A), \sigma(B))}_{\text {Zolotarev number }}=\inf _{s \in \Re_{J, J}} \frac{\sup _{z \in \sigma(A)}|s(z)|}{\inf _{z \in \sigma(B)}|s(z)|}
$$



## ADI as a fast direct solver

## Normal matrices

Goal: choose shifts $p_{j}, q_{j}$ so that the rational function $r(z)$ makes the bound as small as possible:

$$
\underbrace{Z_{J}(\sigma(A), \sigma(B))}_{\text {Zolotarev number }}=\inf _{s \in \Re_{J, J}} \frac{\sup _{z \in \sigma(A)}|s(z)|}{\inf _{z \in \sigma(B)}|s(z)|}
$$



Yegor Zolotarev


## ADI as a fast direct solver

## Real separated spectra

P2. There are real, disjoint intervals such that $\sigma(A) \subset[a, b], \sigma(B) \subset[c, d]$.
The Zolotarev problem is well-studied for real spectra.

Optimal shifts are known: for $[a, b]=[-\alpha,-1]$ and $[c, d]=[1, \alpha]$


## ADI as a fast direct solver

## Real separated spectra

P2. There are real, disjoint intervals such that $\sigma(A) \subset[a, b], \sigma(B) \subset[c, d]$.
The Zolotarev problem is well-studied for real spectra.

1. Optimal shifts are known: for $[a, b]=[-\alpha,-1]$ and $[c, d]=[1, \alpha]$

[Zolotarev, 1877]
[Lu \& Wachspress, 1991]

## ADI as a fast direct solver

## Real separated spectra

P2. There are real, disjoint intervals such that $\sigma(A) \subset[a, b], \sigma(B) \subset[c, d]$.

## The Zolotarev problem is well-studied for real spectra.

1. Optimal shifts are known: Möbius transformations preserve rational functions, so set $\alpha=2 \sqrt{\gamma^{2}-\gamma}+2 \gamma+1$ with $\gamma=\frac{|c-a||d-b|}{|c-b||d-a|}$ :

$$
\begin{aligned}
& \qquad \begin{aligned}
& p_{j}=T\left(-\alpha \operatorname{dn}\left[\frac{2 j+1}{2 J} K\left(\sqrt{1-\frac{1}{\alpha^{2}}}\right), \sqrt{1-\frac{1}{\alpha^{2}}}\right]\right) \\
& q_{j}=T\left(\alpha \operatorname{dn}\left[\frac{2 j+1}{2 J} K\left(\sqrt{1-\frac{1}{\alpha^{2}}}\right), \sqrt{1-\frac{1}{\alpha^{2}}}\right]\right) \\
& \text { Möbius transformation } \\
&\{-\alpha,-1,1, \alpha\} \mapsto\{a, b, c, d\}
\end{aligned}
\end{aligned}
$$

## ADI as a fast direct solver

## Real separated spectra

P2. There are real, disjoint intervals such that $\sigma(A) \subset[a, b], \sigma(B) \subset[c, d]$.
The Zolotarev problem is well-studied for real spectra.
2. There is an upper bound on $Z_{J}([a, b],[c, d])$ :

$$
Z_{J}([a, b],[c, d]) \leq 4\left[\exp \left(\frac{\pi^{2}}{2 \log (16 \gamma)}\right)\right]^{-2 J}
$$

## ADI as a fast direct solver

## Real separated spectra

P2. There are real, disjoint intervals such that $\sigma(A) \subset[a, b], \sigma(B) \subset[c, d]$.
The Zolotarev problem is well-studied for real spectra.

1. Optimal shifts are known.
2. There is an upper bound on $Z_{J}([a, b],[c, d])$.

Run ADI with the optimal shifts $p_{j}, q_{j}$. The $J^{\text {th }}$ iterate has relative error:

$$
\frac{\left\|X-X_{J}\right\|_{2}}{\|X\|_{2}} \leq 4\left[\exp \left(\frac{\pi^{2}}{2 \log (16 \gamma)}\right)\right]^{-2 J}
$$

## ADI as a fast direct solver

## Real separated spectra

P2. There are real, disjoint intervals such that $\sigma(A) \subset[a, b], \sigma(B) \subset[c, d]$.
The Zolotarev problem is well-studied for real spectra.

1. Optimal shifts are known.
2. There is an upper bound on $Z_{J}([a, b],[c, d])$.

Run ADI with the optimal shifts $p_{j}, q_{j}$. The $J^{\text {th }}$ iterate has relative error:

$$
\frac{\left\|X-X_{J}\right\|_{2}}{\|X\|_{2}} \leq 4\left[\exp \left(\frac{\pi^{2}}{2 \log (16 \gamma)}\right)\right]^{-2 J}
$$

## ADI as a fast direct solver

Real separated spectra
P2. There are real, disjoint intervals such that $\sigma(A) \subset[a, b], \sigma(B) \subset[c, d]$.
The Zolotarev problem is well-studied for real spectra.

1. Optimal shifts are known.
2. There is an upper bound on $Z_{J}([a, b],[c, d])$.

$$
\begin{aligned}
& \text { How does } \\
& \text { scale with } n \text { ? }
\end{aligned}
$$

For a given tolerance $0<\epsilon<1$, iterate

$$
J=\left\lceil\frac{\log (16 \gamma) \log (4 / \epsilon)}{\pi^{2}}\right\rceil
$$

times. Then $\left\|X-X_{J}\right\|_{2} \leq \epsilon\|X\|_{2}$.


## ADI as a fast direct solver

## Fast shifted linear solves

P3. For any $p \in \mathbb{C},(A-p l) x=f$ and $(B-p l) x=f$ can be solved in $O(n)$ operations.

$$
\left.\begin{array}{l}
\text { set } X_{0}:=0 \\
\text { choose shift parameters } p_{j}, q_{j} \in \mathbb{C} \\
\text { for } j=0,1, \ldots, J-1 \\
\quad \text { solve } X_{j+1 / 2}\left(B-p_{j} I\right)=F-\left(A-p_{j} I\right) X_{j} \\
\quad \text { solve }\left(A-q_{j} I\right) X_{j+1}=F-X_{j+1 / 2}\left(B-q_{j} I\right)
\end{array}\right\} O\left(n^{2}\right)
$$

Then the total cost of ADI is $O\left(J n^{2}\right)$. (ls $J=O(\log n)$ ?)

## ADI as a fast direct solver

## Three requirements

P1. $A$ and $B$ are normal matrices.
P2. There are real, disjoint intervals such that $\sigma(A) \subset[a, b], \sigma(B) \subset[c, d]$.
P3. For any $p \in \mathbb{C},(A-p l) x=f$ and $(B-p l) x=f$ can be solved in $O(n)$ operations.

1. What shifts $p_{j}, q_{j}$ should we choose?
2. How many iterations $J$ do we need?
3. What is the cost of each iteration?

## ADI as a fast direct solver

## Three requirements

P1. $A$ and $B$ are normal matrices.
P2. There are real, disjoint intervals such that $\sigma(A) \subset[a, b], \sigma(B) \subset[c, d]$.
P3. For any $p \in \mathbb{C},(A-p l) x=f$ and $(B-p l) x=f$ can be solved in $O(n)$ operations.

1. What shifts $p_{j}, q_{j}$ should we choose?
2. How many iterations $J$ do we need?
3. What is the cost of each iteration?

## ADI as a fast direct solver

## Three requirements

P1. $A$ and $B$ are normal matrices.
P2. There are real, disjoint intervals such that $\sigma(A) \subset[a, b], \sigma(B) \subset[c, d]$.
P3. For any $p \in \mathbb{C},(A-p l) x=f$ and $(B-p l) x=f$ can be solved in $O(n)$ operations.

1. What shifts $p_{j}, q_{j}$ should we choose?

$$
\begin{aligned}
& \text { P1 + P2 } \\
& \text { P1 + P2 }
\end{aligned}
$$

2. How many iterations $J$ do we need?
3. What is the cost of each iteration?

## ADI as a fast direct solver

## Three requirements

P1. $A$ and $B$ are normal matrices.
P2. There are real, disjoint intervals such that $\sigma(A) \subset[a, b], \sigma(B) \subset[c, d]$.
P3. For any $p \in \mathbb{C},(A-p l) x=f$ and $(B-p l) x=f$ can be solved in $O(n)$ operations.

1. What shifts $p_{j}, q_{j}$ should we choose?
```
P1 + P2
```

2. How many iterations $J$ do we need?
3. What is the cost of each iteration?
```
P1 + P2
```

P3

## ADI as a fast direct solver

## Three requirements

Back to our spectral discretization:

$$
\begin{array}{rl}
A X-X B=D^{-1} F D^{-1} & A
\end{array}=D^{-1} M, ~ B=-M^{T} D^{-1}
$$

## ADI as a fast direct solver

## Three requirements

Back to our spectral discretization:

$$
\begin{array}{rl}
A X-X B=D^{-1} F D^{-1} & A
\end{array}=D^{-1} M, ~ B=-M^{T} D^{-1}
$$

P1. $A$ and $B$ are normal matrices.

## ADI as a fast direct solver

## Three requirements

Back to our spectral discretization:

$$
\begin{aligned}
\tilde{A} \tilde{X}-\tilde{X} \tilde{B}=D^{-1 / 2} F D^{-1 / 2} & \tilde{A}=D^{-1 / 2} M D^{1 / 2} \\
& \tilde{B}=-D^{1 / 2} M^{\top} D^{-1 / 2}
\end{aligned}
$$

P1. $A$ and $B$ are normal matrices.
Transform $A$ and $B$ to normal matrices:

$$
\begin{aligned}
& \tilde{A}=D^{1 / 2} A D^{-1 / 2} \\
& \tilde{B}=D^{-1 / 2} B D^{1 / 2}
\end{aligned}
$$

and recover $X=D^{-1 / 2} \tilde{X} D^{1 / 2}$.

## ADI as a fast direct solver

## Three requirements

Back to our spectral discretization:

$$
\begin{array}{ll}
\tilde{A} \tilde{X}-\tilde{X} \tilde{B}=D^{-1 / 2} F D^{-1 / 2} & \tilde{A}=D^{-1 / 2} M D^{1 / 2} \\
& \tilde{B}=-D^{1 / 2} M^{\top} D^{-1 / 2}
\end{array}
$$

P2. There are real, disjoint intervals such that $\sigma(\tilde{A}) \subset[a, b], \sigma(\tilde{B}) \subset[c, d]$.

## ADI as a fast direct solver

## Three requirements

Back to our spectral discretization:

$$
\begin{array}{ll}
\tilde{A} \tilde{X}-\tilde{X} \tilde{B}=D^{-1 / 2} F D^{-1 / 2} & \tilde{A}=D^{-1 / 2} M D^{1 / 2} \\
& \tilde{B}=-D^{1 / 2} M^{\top} D^{-1 / 2}
\end{array}
$$

P2. There are real, disjoint intervals such that $\sigma(\tilde{A}) \subset[a, b], \sigma(\tilde{B}) \subset[c, d]$.

We can prove that

$$
\sigma(\tilde{A}) \subset\left[-\frac{1}{2},-\frac{1}{2 n^{4}}\right], \quad \sigma(\tilde{B}) \subset\left[\frac{1}{2 n^{4}}, \frac{1}{2}\right]
$$

by bounding the zeros of $\left(1-x^{2}\right) C^{(3 / 2)}(x)$.
Therefore, $\gamma=O\left(n^{4}\right)$ and $J=O(\log \gamma)=O(\log n)$.

## ADI as a fast direct solver

## Three requirements

Back to our spectral discretization:

$$
\begin{array}{ll}
\tilde{A} \tilde{X}-\tilde{X} \tilde{B}=D^{-1 / 2} F D^{-1 / 2} & \tilde{A}=D^{-1 / 2} M D^{1 / 2} \\
& \tilde{B}=-D^{1 / 2} M^{T} D^{-1 / 2}
\end{array}
$$

P3. For any $p \in \mathbb{C},(\tilde{A}-p l) x=f$ and $(\tilde{B}-p l) x=f$ can be solved in $O(n)$ operations.

## ADI as a fast direct solver

## Three requirements

Back to our spectral discretization:

$$
\begin{array}{ll}
\tilde{A} \tilde{X}-\tilde{X} \tilde{B}=D^{-1 / 2} F D^{-1 / 2} & \tilde{A}=D^{-1 / 2} M D^{1 / 2} \\
& \tilde{B}=-D^{1 / 2} M^{T} D^{-1 / 2}
\end{array}
$$

P3. For any $p \in \mathbb{C},(\tilde{A}-p l) x=f$ and $(\tilde{B}-p l) x=f$ can be solved in $O(n)$ operations.
$(\tilde{A}-p l)$ and $(\tilde{B}-p l)$ are pentadiagonal with zero sub- and super-diagonals.
We can use a variant of the Thomas algorithm to solve in $O(n)$.

## A fast spectral Poisson solver on the square

 RecipeFor a given error tolerance $0<\epsilon<1$ :
Cost

1. Compute $C^{(3 / 2)}$ coefficients of $f \quad O\left(n^{2}(\log n)^{2} \log 1 / \epsilon\right) \quad$ [Townsend, Webb, \& Olver, 2018]
2. Solve matrix equation using ADI - $O\left(n^{2}\right)$ per iteration
$O\left(n^{2} \log n \log 1 / \epsilon\right)$

- $O(\log n \log 1 / \epsilon)$ iterations

3. Convert solution to Chebyshev

$$
O\left(n^{2}(\log n)^{2} \log 1 / \epsilon\right) \quad[T o w n s e n d, \text { Webb, \& Olver, 2018] }
$$

$$
O\left(n^{2}(\log n)^{2} \log 1 / \epsilon\right)
$$

## A fast spectral Poisson solver on the square

## Comparison



## ADI as a rank-revealing algorithm

Solutions can have low numerical rank

## Theorem (F. \& Townsend)

The numerical rank of the solution is bounded by

$$
\operatorname{rank}_{\epsilon}(X) \leq\left\lceil\frac{\log \left(4 n^{4}\right) \log (4 / \epsilon)}{\pi^{2}}\right\rceil \operatorname{rank}(F),
$$

where $\operatorname{rank}_{\epsilon}(X)$ is the smallest $k$ such that $\sigma_{k+1}(X) / \sigma_{1}(X) \leq \epsilon$.

## ADI as a rank-revealing algorithm

Solutions can have low numerical rank

## Theorem (F. \& Townsend)

The numerical rank of the solution is bounded by

$$
\operatorname{rank}_{\epsilon}(X) \leq\left\lceil\frac{\log \left(4 n^{4}\right) \log (4 / \epsilon)}{\pi^{2}}\right\rceil \operatorname{rank}(F),
$$

where $\operatorname{rank}_{\epsilon}(X)$ is the smallest $k$ such that $\sigma_{k+1}(X) / \sigma_{1}(X) \leq \epsilon$.



## ADI as a rank-revealing algorithm

## Computing low rank solutions

Factored ADI: given $F=M N^{*}$, rewrite ADI in terms of low rank factors $X=Z D Y^{*}$


## Fast spectral Poisson solvers on more domains

## Cylinder, sphere, cube



Chebyshev-Fourier-Chebyshev Double Fourier sphere Partial regularity
N decoupled ADI solves

$$
O\left(n^{3}(\log n)^{2}\right)
$$



Chebyshev-Fourier-Fourier Double Fourier sphere Partial regularity
N decoupled ADI solves

$$
O\left(n^{3}(\log n)^{2}\right)
$$



Chebyshev-Chebyshev-Chebyshev Nested ADI iteration

$$
O\left(n^{3}(\log n)^{3}\right)
$$

## Towards more complex geometry

## Spectral elements methods and hp-adaptivity


?

## Towards more complex geometry

Spectral elements methods and hp-adaptivity
SEMs combine:

- the flexibility of finite element methods
- the convergence properties of global spectral methods

$$
h \longrightarrow p
$$



## Towards more complex geometry

## Spectral elements methods and hp-adaptivity

SEMs combine:

- the flexibility of finite element methods
- the convergence properties of global spectral methods



## Towards more complex geometry

Spectral elements methods and hp-adaptivity
SEMs combine:

- the flexibility of finite element methods
- the convergence properties of global spectral methods



## Towards more complex geometry

Spectral elements methods and hp-adaptivity
SEMs combine:

- the flexibility of finite element methods
- the convergence properties of global spectral methods



## Towards more complex geometry

Spectral elements methods and hp-adaptivity
SEMs combine:

- the flexibility of finite element methods
- the convergence properties of global spectral methods



## Towards more complex geometry

Spectral elements methods and hp-adaptivity
SEMs combine:

- the flexibility of finite element methods
- the convergence properties of global spectral methods

$$
h \longrightarrow p
$$



Most SEMs cost $O\left(p^{6} / h^{2}\right)=O\left(N p^{4}\right)$, so the slider is biased.
"In practice, hp-adaptivity means $p \lesssim 6$." [Sherwin, 2014]

## Towards more complex geometry

A spectral element method for very high $p$
Hierarchical Poincaré-Steklov method

- Patch operators by imposing $C^{1}$ continuity across interface
- Merge squares up the tree


Adrianna Gillman

[Martinsson, 2013]
[Gillman \& Martinsson, 2014]

## Towards more complex geometry

A spectral element method for very high $p$
Hierarchical Poincaré-Steklov method

- Patch operators by imposing $C^{1}$ continuity across interface
- Merge squares up the tree


Adrianna Gillman

[Martinsson, 2013]
[Gillman \& Martinsson, 2014]

## Towards more complex geometry

A spectral element method for very high $p$
Hierarchical Poincaré-Steklov method

- Patch operators by imposing $C^{1}$ continuity across interface
- Merge squares up the tree


Adrianna Gillman

[Martinsson, 2013]
[Gillman \& Martinsson, 2014]

## Towards more complex geometry

A spectral element method for very high $p$
Hierarchical Poincaré-Steklov method

- Patch operators by imposing $C^{1}$ continuity across interface
- Merge squares up the tree



## $+$ ADI $=$ <br> $O\left(p^{3}\right)$

on squares
[Martinsson, 2013]
[Gillman \& Martinsson, 2014]

## Towards more complex geometry

A spectral element method for very high $p$



## Thank you



More information in: F. \& Townsend, "Fast Poisson solvers for spectral methods," to appear in IMA J. Numer. Anal.

Code publicly available:
https://github.com/danfortunato/fast-poisson-solvers

## Corner singularities



## A connection to finite differences

## Exploiting structured eigenvalues

$$
K X+X K^{T}=F, \quad K=\frac{1}{h^{2}}\left[\begin{array}{cccc}
2 & -1 & & \\
-1 & \ddots & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & 2
\end{array}\right]
$$

## A connection to finite differences

## Exploiting structured eigenvalues

$$
K X+X K^{T}=F, \quad K=\frac{1}{h^{2}}\left[\begin{array}{cccc}
2 & -1 & & \\
-1 & \ddots & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & 2
\end{array}\right]
$$

P1. $A$ and $B$ are normal matrices.

## A connection to finite differences

## Exploiting structured eigenvalues

$$
K X+X K^{T}=F, \quad K=\frac{1}{h^{2}}\left[\begin{array}{cccc}
2 & -1 & & \\
-1 & \ddots & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & 2
\end{array}\right]
$$

P1. $A$ and $B$ are normal matrices.
$A=K$ and $B=-K^{\top}$ are real and symmetric, so are normal.

## A connection to finite differences

## Exploiting structured eigenvalues

$$
K X+X K^{T}=F, \quad K=\frac{1}{h^{2}}\left[\begin{array}{cccc}
2 & -1 & & \\
-1 & \ddots & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & 2
\end{array}\right]
$$

P2. There are real, disjoint intervals such that $\sigma(A) \subset[a, b], \sigma(B) \subset[c, d]$.

## A connection to finite differences

## Exploiting structured eigenvalues

$$
K X+X K^{T}=F, \quad K=\frac{1}{h^{2}}\left[\begin{array}{cccc}
2 & -1 & & \\
-1 & \ddots & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & 2
\end{array}\right]
$$

P2. There are real, disjoint intervals such that $\sigma(A) \subset[a, b], \sigma(B) \subset[c, d]$.

The eigenvalues of $K$ are

$$
-n^{2} \sin ^{2}(\pi k / 2 n), \quad 1 \leq k \leq n-1
$$

Since $(2 / \pi) x \leq \sin (x) \leq 1$ for $x \in[0, \pi / 2]$, we have:

$$
\sigma(A) \subset\left[-n^{2},-1\right], \quad \sigma(B) \subset\left[1, n^{2}\right] .
$$

## A connection to finite differences

## Exploiting structured eigenvalues

$$
K X+X K^{T}=F, \quad K=\frac{1}{h^{2}}\left[\begin{array}{cccc}
2 & -1 & & \\
-1 & \ddots & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & 2
\end{array}\right]
$$

P3. For any $p \in \mathbb{C},(A-p l) x=f$ and $(B-p l) x=f$ can be solved in $O(n)$ operations.

## A connection to finite differences

## Exploiting structured eigenvalues

$$
K X+X K^{T}=F, \quad K=\frac{1}{h^{2}}\left[\begin{array}{cccc}
2 & -1 & & \\
-1 & \ddots & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & 2
\end{array}\right]
$$

P3. For any $p \in \mathbb{C},(A-p l) x=f$ and $(B-p l) x=f$ can be solved in $O(n)$ operations.
$(A-p l)$ and $(B-p l)$ are tridiagonal. Solve with Thomas algorithm in $O(n)$.

## A connection to finite differences

## Exploiting structured eigenvalues



