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Introduction
A long-standing question

Consider Poisson’s equation on [−1, 1]2 with homogeneous Dirichlet conditions,

uxx + uyy = f , (x , y) ∈ [−1, 1]2, u(±1, ·) = u(·,±1) = 0.

The classic fast Poisson solver using finite differences:

KX + XKT = F︸             ︷︷             ︸
solve with DST-I, O(n2 log n)

, K =
1

h2


2 −1

−1
. . . . . .
. . . . . . −1
−1 2



Bill Buzbee Gene Golub

Based on structured eigenvectors
Complexity increases with order of accuracy

breaks down for spectral

Can we make a spectrally-accurate
Poisson solver with O(n2 log n) complexity?
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A sparse identity
The ultraspherical polynomials

Dirichlet on [−1, 1] ←→ Pick a basis that vanishes at ± 1

The classical orthogonal polynomials, fk , satisfy

A(x)f ′′k (x) + B(x)f ′k (x) = qk fk (x), x ∈ [−1, 1].

The second derivative of (1 − x2)C(λ)
k (x) is given by

∂2

∂x2

[
(1 − x2)C(λ)

k (x)
]
= (1 − x2)C(λ)

k

′′

(x) − 4xC(λ)
k

′

(x) − 2C(λ)
k (x).

Idea: Choose λ = 3
2
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A sparse identity
The ultraspherical polynomials

∂2

∂x2

[
(1 − x2)C(3/2)

k (x)
]
= −(k (k+3)+2)C(3/2)

k (x).

C(3/2)
k (x) is an eigenfunction of the differential operator u 7→ ∂2

∂x2 [(1 − x2)u]

∇
2
[
(1 − y2)(1 − x2)C(3/2)

j (y)C(3/2)
k (x)

]
= − (j(j+3)+2)(1 − x2)C(3/2)

j (y)C(3/2)
k (x)

− (k (k+3)+2)(1 − y2)C(3/2)
j (y)C(3/2)

k (x)

Therefore, represent the solution in the basis

u(x , y) ≈
m−1∑
j=0

n−1∑
k=0

Xjk (1 − y2)(1 − x2)C(3/2)
j (y)C(3/2)

k (x), (x , y) ∈ [−1, 1]2.
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A sparse identity
Does it diagonalize Poisson?

∇
2u = f

We know the action of ∇2 on this basis:

∇
2
[
(1 − y2)(1 − x2)C(3/2)

j (y)C(3/2)
k (x)

]
=

scale︷            ︸︸            ︷
−(k (k+3)+2)

multiply︷   ︸︸   ︷
(1 − y2)C(3/2)

j (y)C(3/2)
k (x)

−(j(j+3)+2)︸          ︷︷          ︸
scale

(1 − x2)︸   ︷︷   ︸
multiply

C(3/2)
j (y)C(3/2)

k (x)

symmetric pentadiagonal

[NIST DLMF, 18.9.7-8]

diagonal
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A sparse identity
Does it diagonalize Poisson?

AX − XB = D−1FD−1
A = D−1M,

B = −MTD−1
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A pentadiagonal Sylvester equation

James Sylvester Aleksandr Lyapunov
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The alternating direction implicit (ADI) method
Solving Sylvester equations

AX − XB = F A ,B ,F ∈ Cn×n

Based on structured eigenvalues

still works for spectral

Donald Peaceman Henry Rachford

set X0 := 0

choose shift parameters pj ,qj ∈ C

for j = 0, 1, . . . , J − 1

solve Xj+1/2(B − pjI) = F − (A − pjI)Xj

solve (A − qjI)Xj+1 = F − Xj+1/2(B − qjI)

1. What shifts pj, qj should we choose?
2. How many iterations J do we need?
3. What is the cost of each iteration?
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ADI as a fast direct solver
Three requirements

AX − XB = F A ,B ,F ∈ Cn×n

Three requirements on A and B will help us answer those three questions:

P1. A and B are normal matrices.

P2. There are real, disjoint intervals such that σ(A) ⊂ [a,b], σ(B) ⊂ [c,d].

P3. For any p ∈ C, (A − pI)x = f and (B − pI)x = f can be solved in O(n)
operations.

Dan Fortunato @ Harvard 6/23



ADI as a fast direct solver
Normal matrices

P1. A and B are normal matrices.

Then there is a bound on ‖X − XJ‖2 based on the spectra σ(A), σ(B) and the
chosen shifts p0, . . . ,pJ−1 and q0, . . . ,qJ−1:

‖X − XJ‖2

‖X‖2
≤

supz∈σ(A) |r(z)|

infz∈σ(B) |r(z)|
, r(z) =

∏J−1
j=0 (z − pj)∏J−1
j=0 (z − qj)

.

Goal: choose shifts pj ,qj so that the rational function r(z) makes the bound as
small as possible:

supz∈σ(A) |r(z)|

infz∈σ(B) |r(z)|
= inf

s∈RJ,J

supz∈σ(A) |s(z)|

infz∈σ(B) |s(z)|

pj ,qj ?

Dan Fortunato @ Harvard 7/23
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ADI as a fast direct solver
Normal matrices

Goal: choose shifts pj ,qj so that the rational function r(z) makes the bound as
small as possible:

ZJ(σ(A), σ(B))︸            ︷︷            ︸
Zolotarev number

= inf
s∈RJ,J

supz∈σ(A) |s(z)|

infz∈σ(B) |s(z)|
pj ,qj ?

σ(A) σ(B)

Im

Re

Yegor Zolotarev
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ADI as a fast direct solver
Real separated spectra

P2. There are real, disjoint intervals such that σ(A) ⊂ [a,b], σ(B) ⊂ [c,d].

The Zolotarev problem is well-studied for real spectra.

1. Optimal shifts are known: for [a,b] = [−α,−1] and [c,d] = [1, α]

pj = −α dn
[
2j+1
2J K

(√
1 − 1

α2

)
,
√
1 − 1

α2

]
qj = α dn

[
2j+1
2J K

(√
1 − 1

α2

)
,
√
1 − 1

α2

]

[Zolotarev, 1877]
[Lu & Wachspress, 1991]

Dan Fortunato @ Harvard 9/23



ADI as a fast direct solver
Real separated spectra

P2. There are real, disjoint intervals such that σ(A) ⊂ [a,b], σ(B) ⊂ [c,d].

The Zolotarev problem is well-studied for real spectra.

1. Optimal shifts are known: for [a,b] = [−α,−1] and [c,d] = [1, α]

pj = −α dn
[
2j+1
2J K

(√
1 − 1

α2

)
,
√
1 − 1

α2

]
qj = α dn

[
2j+1
2J K

(√
1 − 1

α2

)
,
√
1 − 1

α2

]

[Zolotarev, 1877]
[Lu & Wachspress, 1991]complete elliptic integral

of the first kindJacobi elliptic function
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ADI as a fast direct solver
Real separated spectra

P2. There are real, disjoint intervals such that σ(A) ⊂ [a,b], σ(B) ⊂ [c,d].

The Zolotarev problem is well-studied for real spectra.

1. Optimal shifts are known: Möbius transformations preserve rational
functions, so set α = 2

√
γ2 − γ+ 2γ+ 1 with γ = |c−a ||d−b |

|c−b ||d−a | :

pj = T
(
−α dn

[
2j+1
2J K

(√
1 − 1

α2

)
,
√
1 − 1

α2

])
qj = T

(
α dn

[
2j+1
2J K

(√
1 − 1

α2

)
,
√
1 − 1

α2

])

[Sabino, 2007]

Möbius transformation
{−α,−1, 1, α} 7→ {a,b , c,d}
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ADI as a fast direct solver
Real separated spectra

P2. There are real, disjoint intervals such that σ(A) ⊂ [a,b], σ(B) ⊂ [c,d].

The Zolotarev problem is well-studied for real spectra.

2. There is an upper bound on ZJ([a,b], [c,d]):

ZJ([a,b], [c,d]) ≤ 4

[
exp

(
π2

2 log(16γ)

)]−2J

[Braess & Hackbusch, 2005]
[Beckermann & Townsend, 2017]
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ADI as a fast direct solver
Real separated spectra

P2. There are real, disjoint intervals such that σ(A) ⊂ [a,b], σ(B) ⊂ [c,d].

The Zolotarev problem is well-studied for real spectra.

1. Optimal shifts are known.
2. There is an upper bound on ZJ([a,b], [c,d]).

Run ADI with the optimal shifts pj, qj. The Jth iterate has relative error:

‖X − XJ‖2

‖X‖2
≤ 4

[
exp

(
π2

2 log(16γ)

)]−2J
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ADI as a fast direct solver
Real separated spectra

P2. There are real, disjoint intervals such that σ(A) ⊂ [a,b], σ(B) ⊂ [c,d].

The Zolotarev problem is well-studied for real spectra.

1. Optimal shifts are known.
2. There is an upper bound on ZJ([a,b], [c,d]). How does γ

scale with n?
For a given tolerance 0 < ε < 1, iterate

J =

⌈
log(16γ) log(4/ε)

π2

⌉
times. Then ‖X − XJ‖2 ≤ ε‖X‖2. a priori error estimate
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ADI as a fast direct solver
Fast shifted linear solves

P3. For any p ∈ C, (A − pI)x = f and (B − pI)x = f can be solved in O(n)
operations.

set X0 := 0

choose shift parameters pj ,qj ∈ C

for j = 0, 1, . . . , J − 1

solve Xj+1/2(B − pjI) = F − (A − pjI)Xj

solve (A − qjI)Xj+1 = F − Xj+1/2(B − qjI)

Then the total cost of ADI is O(Jn2). (Is J = O(log n)?)

 O(n2)
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ADI as a fast direct solver
Three requirements

P1. A and B are normal matrices.

P2. There are real, disjoint intervals such that σ(A) ⊂ [a,b], σ(B) ⊂ [c,d].

P3. For any p ∈ C, (A − pI)x = f and (B − pI)x = f can be solved in O(n)
operations.

1. What shifts pj, qj should we choose?

P1 + P2

2. How many iterations J do we need?

P1 + P2

3. What is the cost of each iteration?

P3
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ADI as a fast direct solver
Three requirements

Back to our spectral discretization:

AX − XB = D−1FD−1
A = D−1M,

B = −MTD−1

Dan Fortunato @ Harvard 14/23



ADI as a fast direct solver
Three requirements

Back to our spectral discretization:

AX − XB = D−1FD−1
A = D−1M,

B = −MTD−1

P1. A and B are normal matrices.

Dan Fortunato @ Harvard 14/23



ADI as a fast direct solver
Three requirements

Back to our spectral discretization:

Ã X̃ − X̃ B̃ = D−1/2FD−1/2
Ã = D−1/2MD1/2,

B̃ = −D1/2MTD−1/2

P1. A and B are normal matrices.

Transform A and B to normal matrices:

Ã = D1/2AD−1/2

B̃ = D−1/2BD1/2

and recover X = D−1/2X̃D1/2.
X
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Back to our spectral discretization:

Ã X̃ − X̃ B̃ = D−1/2FD−1/2
Ã = D−1/2MD1/2,

B̃ = −D1/2MTD−1/2

P2. There are real, disjoint intervals such that σ(Ã) ⊂ [a,b], σ(B̃) ⊂ [c,d].
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ADI as a fast direct solver
Three requirements

Back to our spectral discretization:

Ã X̃ − X̃ B̃ = D−1/2FD−1/2
Ã = D−1/2MD1/2,

B̃ = −D1/2MTD−1/2

P2. There are real, disjoint intervals such that σ(Ã) ⊂ [a,b], σ(B̃) ⊂ [c,d].

We can prove that

σ(Ã) ⊂
[
−

1
2 ,−

1
2n4

]
, σ(B̃) ⊂

[
1

2n4 , 12
]

by bounding the zeros of (1 − x2)C(3/2)(x).

Therefore, γ = O(n4) and J = O(log γ) = O(log n).
X
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ADI as a fast direct solver
Three requirements

Back to our spectral discretization:

Ã X̃ − X̃ B̃ = D−1/2FD−1/2
Ã = D−1/2MD1/2,

B̃ = −D1/2MTD−1/2

P3. For any p ∈ C, (Ã − pI)x = f and (B̃ − pI)x = f can be solved in O(n)
operations.

(Ã − pI) and (B̃ − pI) are pentadiagonal with zero sub- and super-diagonals.

We can use a variant of the Thomas algorithm to solve in O(n).

X
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A fast spectral Poisson solver on the square
Recipe

For a given error tolerance 0 < ε < 1: Cost

1. Compute C(3/2) coefficients of f O(n2(log n)2 log 1/ε) [Townsend, Webb, & Olver, 2018]

2. Solve matrix equation using ADI
I O(n2) per iteration
I O(log n log 1/ε) iterations

3. Convert solution to Chebyshev O(n2(log n)2 log 1/ε) [Townsend, Webb, & Olver, 2018]

O(n2 log n log 1/ε)

O(n2(log n)2 log 1/ε)
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A fast spectral Poisson solver on the square
Comparison
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ADI as a rank-revealing algorithm
Solutions can have low numerical rank

Theorem (F. & Townsend)
The numerical rank of the solution is bounded by

rankε(X) ≤

⌈
log(4n4) log(4/ε)

π2

⌉
rank(F),

where rankε(X) is the smallest k such that σk+1(X)/σ1(X) ≤ ε.
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ADI as a rank-revealing algorithm
Computing low rank solutions

Factored ADI: given F = MN∗, rewrite ADI in terms of low rank factors X = ZDY ∗
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Fast spectral Poisson solvers on more domains
Cylinder, sphere, cube

Chebyshev–Fourier–Chebyshev
Double Fourier sphere

Partial regularity
N decoupled ADI solves

O(n3(log n)2)

Chebyshev–Fourier–Fourier
Double Fourier sphere

Partial regularity
N decoupled ADI solves

O(n3(log n)2)

Chebyshev–Chebyshev–Chebyshev
Nested ADI iteration
O(n3(log n)3)
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Towards more complex geometry
Spectral elements methods and hp-adaptivity

?

Dan Fortunato @ Harvard 20/23



Towards more complex geometry
Spectral elements methods and hp-adaptivity

SEMs combine:
the flexibility of finite element methods
the convergence properties of global spectral methods

h p
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Towards more complex geometry
Spectral elements methods and hp-adaptivity

SEMs combine:
the flexibility of finite element methods
the convergence properties of global spectral methods

h p

Most SEMs cost O(p6/h2) = O(N p4), so the slider is biased.

“In practice, hp-adaptivity means p . 6.” [Sherwin, 2014]
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Towards more complex geometry
A spectral element method for very high p

Hierarchical Poincaré–Steklov method

Patch operators by imposing C1 continuity across interface

Merge squares up the tree

Gunnar Martinsson Adrianna Gillman

S1 S2

S3 S4

[Martinsson, 2013]

[Gillman & Martinsson, 2014]
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Towards more complex geometry
A spectral element method for very high p

Hierarchical Poincaré–Steklov method

Patch operators by imposing C1 continuity across interface

Merge squares up the tree

Gunnar Martinsson Adrianna Gillman

S12

S34

[Martinsson, 2013]

[Gillman & Martinsson, 2014]
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Towards more complex geometry
A spectral element method for very high p

Hierarchical Poincaré–Steklov method

Patch operators by imposing C1 continuity across interface

Merge squares up the tree

Gunnar Martinsson Adrianna Gillman

S1234

[Martinsson, 2013]

[Gillman & Martinsson, 2014]
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Towards more complex geometry
A spectral element method for very high p

Hierarchical Poincaré–Steklov method

Patch operators by imposing C1 continuity across interface

Merge squares up the tree

Gunnar Martinsson Adrianna Gillman

[Martinsson, 2013]

[Gillman & Martinsson, 2014]

+ ADI = O(p3)
on squares
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Towards more complex geometry
A spectral element method for very high p

p = 50

∼6 sec
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Thank you

More information in: F. & Townsend, “Fast Poisson solvers for spectral methods,”
to appear in IMA J. Numer. Anal.

Code publicly available:
https://github.com/danfortunato/fast-poisson-solvers
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Corner singularities
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A connection to finite differences
Exploiting structured eigenvalues

KX + XKT = F , K =
1

h2


2 −1

−1
. . . . . .
. . . . . . −1
−1 2
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A connection to finite differences
Exploiting structured eigenvalues

KX + XKT = F , K =
1

h2


2 −1

−1
. . . . . .
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−1 2


P1. A and B are normal matrices.
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A connection to finite differences
Exploiting structured eigenvalues

KX + XKT = F , K =
1

h2


2 −1

−1
. . . . . .
. . . . . . −1
−1 2


P1. A and B are normal matrices.

A = K and B = −KT are real and symmetric, so are normal.

X
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A connection to finite differences
Exploiting structured eigenvalues

KX + XKT = F , K =
1

h2


2 −1

−1
. . . . . .
. . . . . . −1
−1 2


P2. There are real, disjoint intervals such that σ(A) ⊂ [a,b], σ(B) ⊂ [c,d].
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A connection to finite differences
Exploiting structured eigenvalues

KX + XKT = F , K =
1

h2


2 −1

−1
. . . . . .
. . . . . . −1
−1 2


P2. There are real, disjoint intervals such that σ(A) ⊂ [a,b], σ(B) ⊂ [c,d].

The eigenvalues of K are

−n2 sin2(πk/2n), 1 ≤ k ≤ n − 1

Since (2/π)x ≤ sin(x) ≤ 1 for x ∈ [0, π/2], we have:

σ(A) ⊂ [−n2,−1], σ(B) ⊂ [1,n2].

X
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A connection to finite differences
Exploiting structured eigenvalues

KX + XKT = F , K =
1

h2


2 −1

−1
. . . . . .
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−1 2


P3. For any p ∈ C, (A − pI)x = f and (B − pI)x = f can be solved in O(n)

operations.
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A connection to finite differences
Exploiting structured eigenvalues

KX + XKT = F , K =
1

h2


2 −1

−1
. . . . . .
. . . . . . −1
−1 2


P3. For any p ∈ C, (A − pI)x = f and (B − pI)x = f can be solved in O(n)

operations.

(A − pI) and (B − pI) are tridiagonal. Solve with Thomas algorithm in O(n).

X
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A connection to finite differences
Exploiting structured eigenvalues
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