Fast and accurate element methods

Dan Fortunato

Harvard University
Qualifying Exam

May 22, 2017

Advisors: Chris Rycroft, Alex Townsend

Motivation

The numerical solution of PDEs arises everywhere in simulation, but...

- solving PDEs accurately can be slow.
- solving PDEs fast can be inaccurate.

> Methods that are both fast and accurate are essential for large-scale simulation.

Fast \rightarrow optimal complexity

- Time to solution is proportional to number of unknowns (up to log factors).

Accurate \rightarrow spectrally accurate
Discretization error is limited only by smoothness of input and output functions.

Overview

- An optimal complexity spectral element method
- Poisson on a rectangle
- Poisson on a quadrilateral
- Towards a spectral element method
- Discontinuous Galerkin methods
- Eulerian fluid-structure interaction
- Elliptic problems

An optimal complexity spectral element method Motivation

hp-adaptive spectral element methods exist in theory but not in practice.

An optimal complexity spectral element method

 Motivationhp-adaptive spectral element methods exist in theory but not in practice.

An optimal complexity spectral element method

 Motivation$h p$-adaptive spectral element methods exist in theory but not in practice.

An optimal complexity spectral element method Motivation

$h p$-adaptive spectral element methods exist in theory but not in practice.

If we have an optimal complexity spectral element method, then h and p can be chosen based on physical considerations only.
h-refinement is good for:

- corner singularities
- discontinuities/shocks
p-refinement is good for:
- smooth solutions
- advection-dominated fluid flow
- high-frequency acoustic scattering

An optimal complexity spectral element method

 The elements of an element method- An element solver (local)
- An interface solver (global)

- boundary
- interface
element

An optimal complexity spectral element method

The elements of an element method

- An element solver (local)
- An interface solver (global)

- boundary
- interface
element

An optimal complexity spectral element method

The elements of an element method

- An element solver (local)
- An interface solver (global)

If we can solve for the interfaces, the elements decouple!

- boundary
- interface element

Poisson on a rectangle

Introduction

A long-standing question
Consider Poisson's equation on $[-1,1]^{2}$ with homogeneous Dirichlet conditions,

$$
u_{x x}+u_{y y}=f, \quad(x, y) \in[-1,1]^{2}, \quad u(\pm 1, \cdot)=u(\cdot, \pm 1)=0 .
$$

Can we make a spectrally-accurate Poisson solver with $\mathcal{O}\left(p^{2} \log p\right)$ complexity?

Introduction

A long-standing question

Consider Poisson's equation on $[-1,1]^{2}$ with homogeneous Dirichlet conditions,

$$
u_{x x}+u_{y y}=f, \quad(x, y) \in[-1,1]^{2}, \quad u(\pm 1, \cdot)=u(\cdot, \pm 1)=0
$$

The classic fast Poisson solver using finite differences:

$$
K=\frac{1}{h^{2}}\left[\begin{array}{cccc}
2 & -1 & & \\
-1 & \ddots & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & 2
\end{array}\right]
$$

Can we make a spectrally-accurate Poisson solver with $\mathcal{O}\left(p^{2} \log p\right)$ complexity?

Introduction

A long-standing question

Consider Poisson's equation on $[-1,1]^{2}$ with homogeneous Dirichlet conditions,

$$
u_{x x}+u_{y y}=f, \quad(x, y) \in[-1,1]^{2}, \quad u(\pm 1, \cdot)=u(\cdot, \pm 1)=0
$$

The classic fast Poisson solver using finite differences:

$$
K=\frac{1}{h^{2}}\left[\begin{array}{cccc}
2 & -1 & & \\
-1 & \ddots & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & 2
\end{array}\right]
$$

- Based on structured eigenvectors
- Complexity increases with order of accuracy

> Can we make a spectrally-accurate Poisson solver with $\mathcal{O}\left(p^{2} \log p\right)$ complexity?

Introduction

A long-standing question

Consider Poisson's equation on $[-1,1]^{2}$ with homogeneous Dirichlet conditions,

$$
u_{x x}+u_{y y}=f, \quad(x, y) \in[-1,1]^{2}, \quad u(\pm 1, \cdot)=u(\cdot, \pm 1)=0
$$

The classic fast Poisson solver using finite differences:

$$
\begin{aligned}
& \underbrace{K X+X K=F}_{\text {le with } \mathrm{FFT}, \mathcal{O}\left(p^{2} \log p\right)}, \quad K=\frac{1}{h^{2}} \\
& \text { structured eigenvectors }
\end{aligned}
$$

- Based on structured eigenvectors
- Complexity increases with order of accuracy

Introduction

A long-standing question

Consider Poisson's equation on $[-1,1]^{2}$ with homogeneous Dirichlet conditions,

$$
u_{x x}+u_{y y}=f, \quad(x, y) \in[-1,1]^{2}, \quad u(\pm 1, \cdot)=u(\cdot, \pm 1)=0
$$

The classic fast Poisson solver using finite differences:

- Based on structured eigenvectors

Can we make a spectrally-accurate Poisson solver with $\mathcal{O}\left(p^{2} \log p\right)$ complexity?

A clever choice of basis

The ultraspherical polynomials

Dirichlet on $[-1,1] \longleftrightarrow$ Pick a basis that vanishes at ± 1

A clever choice of basis

The ultraspherical polynomials

Dirichlet on $[-1,1] \longleftrightarrow$ Pick a basis that vanishes at ± 1

The classical orthogonal polynomials, f_{k}, satisfy

$$
A(x) f_{k}^{\prime \prime}(x)+B(x) f_{k}^{\prime}(x)=q_{k} f_{k}(x), \quad x \in[-1,1] .
$$

A clever choice of basis

The ultraspherical polynomials

Dirichlet on $[-1,1] \longleftrightarrow$ Pick a basis that vanishes at ± 1

The ultraspherical polynomials of parameter $\lambda, C_{k}^{(\lambda)}$, satisfy [NIST DLMF, 18.8.1]

$$
\left(1-x^{2}\right) C_{k}^{(\lambda) \prime \prime}(x)-(2 \lambda+1) x C_{k}^{(\lambda)^{\prime}}(x)=-k(k+2 \lambda) C_{k}^{(\lambda)}(x), \quad x \in[-1,1] .
$$

A clever choice of basis

The ultraspherical polynomials

Dirichlet on $[-1,1] \longleftrightarrow$ Pick a basis that vanishes at ± 1

The ultraspherical polynomials of parameter $\lambda, C_{k}^{(\lambda)}$, satisfy [NIST DLMF, 18.8.1]

$$
\left(1-x^{2}\right) C_{k}^{(\lambda) \prime \prime}(x)-(2 \lambda+1) x C_{k}^{(\lambda)^{\prime}}(x)=-k(k+2 \lambda) C_{k}^{(\lambda)}(x), \quad x \in[-1,1] .
$$

The second derivative of $\left(1-x^{2}\right) C_{k}^{(\lambda)}(x)$ is given by

$$
\frac{\partial^{2}}{\partial x^{2}}\left[\left(1-x^{2}\right) C_{k}^{(\lambda)}(x)\right]=\left(1-x^{2}\right) C_{k}^{(\lambda) \prime \prime}(x)-4 x C_{k}^{(\lambda)^{\prime}}(x)-2 C_{k}^{(\lambda)}(x)
$$

A clever choice of basis

The ultraspherical polynomials

Dirichlet on $[-1,1] \longleftrightarrow$ Pick a basis that vanishes at ± 1

The ultraspherical polynomials of parameter $\lambda, C_{k}^{(\lambda)}$, satisfy [NIST DLMF, 18.8.1]

$$
\left(1-x^{2}\right) C_{k}^{(\lambda) \prime \prime}(x)-(2 \lambda+1) x C_{k}^{(\lambda)^{\prime}}(x)=-k(k+2 \lambda) C_{k}^{(\lambda)}(x), \quad x \in[-1,1] .
$$

The second derivative of $\left(1-x^{2}\right) C_{k}^{(\lambda)}(x)$ is given by

$$
\frac{\partial^{2}}{\partial x^{2}}\left[\left(1-x^{2}\right) C_{k}^{(\lambda)}(x)\right]=\left(1-x^{2}\right) C_{k}^{(\lambda)^{\prime \prime}}(x)-4 x C_{k}^{(\lambda)^{\prime}}(x)-2 C_{k}^{(\lambda)}(x)
$$

A clever choice of basis

The ultraspherical polynomials

Dirichlet on $[-1,1] \longleftrightarrow$ Pick a basis that vanishes at ± 1

The ultraspherical polynomials of parameter $\lambda, C_{k}^{(\lambda)}$, satisfy [NIST DLMF, 18.8.1]

$$
\left(1-x^{2}\right) C_{k}^{(\lambda) \prime \prime}(x)-(2 \lambda+1) x C_{k}^{(\lambda)^{\prime}}(x)=-k(k+2 \lambda) C_{k}^{(\lambda)}(x), \quad x \in[-1,1] .
$$

The second derivative of $\left(1-x^{2}\right) C_{k}^{(\lambda)}(x)$ is given by

$$
\frac{\partial^{2}}{\partial x^{2}}\left[\left(1-x^{2}\right) C_{k}^{(\lambda)}(x)\right]=\left(1-x^{2}\right) C_{k}^{(\lambda)^{\prime \prime}}(x)-4 x C_{k}^{(\lambda)^{\prime}}(x)-2 C_{k}^{(\lambda)}(x)
$$

$$
\text { Idea: Choose } \lambda=\frac{3}{2}
$$

A clever choice of basis

The ultraspherical polynomials

$$
\frac{\partial^{2}}{\partial x^{2}}\left[\left(1-x^{2}\right) C_{k}^{(3 / 2)}(x)\right]=-(k(k+3)+2) C_{k}^{(3 / 2)}(x)
$$

A clever choice of basis

The ultraspherical polynomials

$$
\frac{\partial^{2}}{\partial x^{2}}\left[\left(1-x^{2}\right) C_{k}^{(3 / 2)}(x)\right]=-(k(k+3)+2) C_{k}^{(3 / 2)}(x)
$$

$C_{k}^{(3 / 2)}(x)$ is an eigenfunction of the differential operator $u \mapsto \frac{\partial^{2}}{\partial x^{2}}\left(1-x^{2}\right) u$

A clever choice of basis

The ultraspherical polynomials

$$
\frac{\partial^{2}}{\partial x^{2}}\left[\left(1-x^{2}\right) C_{k}^{(3 / 2)}(x)\right]=-(k(k+3)+2) C_{k}^{(3 / 2)}(x)
$$

$C_{k}^{(3 / 2)}(x)$ is an eigenfunction of the differential operator $u \mapsto \frac{\partial^{2}}{\partial x^{2}}\left(1-x^{2}\right) u$

$$
\begin{aligned}
\nabla^{2}\left[\left(1-x^{2}\right)\left(1-y^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y)\right]= & -(j(j+3)+2)\left(1-y^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y) \\
& -(k(k+3)+2)\left(1-x^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y)
\end{aligned}
$$

A clever choice of basis

The ultraspherical polynomials

$$
\frac{\partial^{2}}{\partial x^{2}}\left[\left(1-x^{2}\right) C_{k}^{(3 / 2)}(x)\right]=-(k(k+3)+2) C_{k}^{(3 / 2)}(x)
$$

$C_{k}^{(3 / 2)}(x)$ is an eigenfunction of the differential operator $u \mapsto \frac{\partial^{2}}{\partial x^{2}}\left(1-x^{2}\right) u$

$$
\begin{aligned}
\nabla^{2}\left[\left(1-x^{2}\right)\left(1-y^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y)\right]= & -(j(j+3)+2)\left(1-y^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y) \\
& -(k(k+3)+2)\left(1-x^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y)
\end{aligned}
$$

Therefore, represent the solution in the basis

$$
u(x, y) \approx \sum_{j=0}^{m-1} \sum_{k=0}^{n-1} X_{j k}\left(1-x^{2}\right)\left(1-y^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y), \quad(x, y) \in[-1,1]^{2}
$$

A clever choice of basis

Can we "diagonalize" Poisson?

$$
\nabla^{2} u=f
$$

A clever choice of basis

Can we "diagonalize" Poisson?

$$
\nabla^{2}\left[\sum_{j, k} X_{j k}\left(1-x^{2}\right)\left(1-y^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y)\right]=\sum_{j, k} F_{j k} C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y)
$$

A clever choice of basis

Can we "diagonalize" Poisson?

$$
\nabla^{2}\left[\sum_{j, k} X_{j k}\left(1-x^{2}\right)\left(1-y^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y)\right]=\sum_{j, k} F_{j k} C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y)
$$

We know the action of ∇^{2} on this basis:

$$
\begin{aligned}
\nabla^{2}\left[\left(1-x^{2}\right)\left(1-y^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y)\right]= & -(j(j+3)+2)\left(1-y^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y) \\
& -(k(k+3)+2)\left(1-x^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y) .
\end{aligned}
$$

A clever choice of basis

Can we "diagonalize" Poisson?

$$
M X D^{T}+D X M^{T}=F
$$

We know the action of ∇^{2} on this basis:

$$
\begin{aligned}
\nabla^{2}\left[\left(1-x^{2}\right)\left(1-y^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y)\right]= & -(j(j+3)+2)\left(1-y^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y) \\
& -(k(k+3)+2)\left(1-x^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y)
\end{aligned}
$$

A clever choice of basis

Can we "diagonalize" Poisson?

$$
M X D^{T}+D X M^{T}=F
$$

We know the action of ∇^{2} on this basis:

$$
\begin{aligned}
\nabla^{2}\left[\left(1-x^{2}\right)\left(1-y^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y)\right]= & \overbrace{-(j(j+3)+2)}^{\text {scale }}\left(1-y^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y) \\
& -(k(k+3)+2)\left(1-x^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y) .
\end{aligned}
$$

A clever choice of basis

Can we "diagonalize" Poisson?

$$
M X D^{T}+D X M^{T}=F
$$

We know the action of ∇^{2} on this basis:

$$
\begin{aligned}
\nabla^{2}\left[\left(1-x^{2}\right)\left(1-y^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y)\right]= & -(j(j+3)+2) \overbrace{\left(1-y^{2}\right)}^{\text {multiply }} C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y) \\
& -(k(k+3)+2)\left(1-x^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y)
\end{aligned}
$$

A clever choice of basis

Can we "diagonalize" Poisson?

$$
M X D^{T}+D X M^{T}=F
$$

We know the action of ∇^{2} on this basis:

$$
\begin{aligned}
\nabla^{2}\left[\left(1-x^{2}\right)\left(1-y^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y)\right]= & -(j(j+3)+2)\left(1-y^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y) \\
& \underbrace{-(k(k+3)+2)}_{\text {scale }}\left(1-x^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y)
\end{aligned}
$$

A clever choice of basis

Can we "diagonalize" Poisson?

$$
M X D^{T}+D X M^{T}=F
$$

We know the action of ∇^{2} on this basis:

$$
\begin{aligned}
\nabla^{2}\left[\left(1-x^{2}\right)\left(1-y^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y)\right]= & -(j(j+3)+2)\left(1-y^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y) \\
& -(k(k+3)+2) \underbrace{\left(1-x^{2}\right)}_{\text {multiply }} C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y)
\end{aligned}
$$

A clever choice of basis

Can we "diagonalize" Poisson?

We know the action of ∇^{2} on this basis:
(NIST DLMM,

$$
\begin{aligned}
\nabla^{2}\left[\left(1-x^{2}\right)\left(1-y^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y)\right]= & -(j(j+3)+2)\left(1-y^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y) \\
& -(k(k+3)+2)\left(1-x^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y) .
\end{aligned}
$$

A clever choice of basis

Can we "diagonalize" Poisson?

$$
T X+X T^{T}=D^{-1} F D^{-1}, \quad T=D^{-1} M
$$

We know the action of ∇^{2} on this basis:

$$
\begin{aligned}
\nabla^{2}\left[\left(1-x^{2}\right)\left(1-y^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y)\right]= & -(j(j+3)+2)\left(1-y^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y) \\
& -(k(k+3)+2)\left(1-x^{2}\right) C_{j}^{(3 / 2)}(x) C_{k}^{(3 / 2)}(y)
\end{aligned}
$$

The Alternating Direction Implicit (ADI) method

 (for solving matrix equations) [Wachspress, 1987]$$
T X+X T^{T}=F
$$

The Alternating Direction Implicit (ADI) method

 (for solving matrix equations) [Wachspress, 1987]$$
T X+X T^{T}=F
$$

- Based on structured eigenvalues
- Optimal parameters known [Lu \& Wachspress, 1991]

The Alternating Direction Implicit (ADI) method

(for solving matrix equations) [Wachspress, 1987]

$$
T X+X T^{T}=F
$$

- Based on structured eigenvalues
- Optimal parameters known [Lu \& Wachspress, 1991]

The Alternating Direction Implicit (ADI) method

 (for solving matrix equations) [Wachspress, 1987]$$
T X+X T^{T}=F
$$

- Based on structured eigenvalues
- Optimal parameters known [Lu \& Wachspress, 1991]

$$
\text { set } \quad X_{0}=0
$$

pick shift parameters p_{j} for $j=0, \ldots, J$
solve $\quad X_{j+1 / 2}\left(T^{T}+p_{j} I\right)=F-\left(T-p_{j} I\right) X_{j}$
solve $\left(T+p_{j} l\right) X_{j+1}=F-X_{j+1 / 2}\left(T^{T}-p_{j} l\right)$

The Alternating Direction Implicit (ADI) method

(for solving matrix equations) [Wachspress, 1987]

$$
T X+X T^{T}=F
$$

- Based on structured eigenvalues
- Optimal parameters known [Lu \& Wachspress, 1991]

$$
\text { set } \quad X_{0}=0
$$

pick shift parameters p_{j} for $j=0, \ldots, J$ solve $\quad X_{j+1 / 2}\left(T^{T}+p_{j} I\right)=F-\left(T-p_{j} I\right) X_{j} \quad$ Thomas algorithm solve $\left(T+p_{j} I\right) X_{j+1}=F-X_{j+1 / 2}\left(T^{T}-p_{j} I\right)$ $\mathcal{O}\left(p^{2}\right)$

The Alternating Direction Implicit (ADI) method

(for solving matrix equations) [Wachspress, 1987]

$$
T X+X T^{T}=F
$$

- Based on structured eigenvalues
- Optimal parameters known [Lu \& Wachspress, 1991]

$$
\text { set } \quad X_{0}=0
$$

pick shift parameters p_{j}

$$
\text { for } j=0, \ldots \text { ? }
$$

solve $\quad X_{j+1 / 2}\left(T^{T}+p_{j} I\right)=F-\left(T-p_{j} I\right) X_{j} \quad$ Thomas algorithm
solve $\left(T+p_{j} I\right) X_{j+1}=F-X_{j+1 / 2}\left(T^{T}-p_{j} I\right)$
$\mathcal{O}\left(p^{2}\right)$

The Alternating Direction Implicit (ADI) method

(for solving matrix equations) [Wachspress, 1987]

$$
T X+X T^{T}=F
$$

- Based on structured eigenvalues
- Optimal parameters known [Lu \& Wachspress, 1991]

$$
\text { set } \quad X_{0}=0
$$

pick shift parameters p_{j}

$$
\text { for } j=0, \ldots \bigcup ?
$$

solve $\quad X_{j+1 / 2}\left(T^{T}+p_{j} I\right)=F-\left(T-p_{j} I\right) X_{j} \quad$ Thomas algorithm
solve $\left(T+p_{j} I\right) X_{j+1}=F-X_{j+1 / 2}\left(T^{T}-p_{j} I\right)$
$\mathcal{O}\left(p^{2}\right)$

If eigenvalues of T lie in $[a, b]$, then for $0<\epsilon<1, \frac{\left\|X-X_{J}\right\|_{2}}{\|X\|_{2}} \leqslant \epsilon$ when $J>\frac{1}{\pi^{2}} \log \frac{4 b}{a} \log \frac{4}{\epsilon}$
[Lu \& Wachspress, 1991]

Gershgorin's circle theorem

Bounding the eigenvalues

Theorem
Every eigenvalue of a complex $n \times n$ matrix A lies within at least one disc centered at $a_{i i}$ of radius $\sum_{j \neq i}\left|a_{i j}\right|$.

Gershgorin's circle theorem

Bounding the eigenvalues

Theorem
Every eigenvalue of a complex $n \times n$ matrix A lies within at least one disc centered at $a_{i i}$ of radius $\sum_{j \neq i}\left|a_{i j}\right|$.

Gershgorin's circle theorem

Bounding the eigenvalues

Theorem
Every eigenvalue of a complex $n \times n$ matrix A lies within at least one disc centered at $a_{i i}$ of radius $\sum_{j \neq i}\left|a_{i j}\right|$.

$$
J \sim \mathcal{O}\left(\log p \log \frac{1}{\epsilon}\right)
$$

A fast spectrally-accurate Poisson solver

For a given error tolerance $0<\epsilon<1$:

1. Compute $C^{(3 / 2)}$ coefficients of f
2. Solve matrix equation using ADI

- $\mathcal{O}\left(p^{2}\right)$ per iteration
- $\mathcal{O}(\log p \log 1 / \epsilon)$ iterations

3. Convert solution to Chebyshev
\qquad
$\mathcal{O}\left(p^{2}(\log p)^{2} \log 1 / \epsilon\right) \quad[$ Hale $\&$ Townsend, 2014]
$\mathcal{O}\left(p^{2} \log p \log 1 / \epsilon\right)$
$\mathcal{O}\left(p^{2}(\log p)^{2} \log 1 / \epsilon\right) \quad[$ Hale \& Townsend, 2014]

$$
\mathcal{O}\left(p^{2}(\log p)^{2} \log 1 / \epsilon\right)
$$

A similar method in 1979

...but a different conclusion!

"The accurate solution of Poisson's equation by expansion in Chebyshev polynomials"
[Haidvogel \& Zang, 1979]

Chebyshev differentiation

Dale Haidvogel

A similar method in 1979

...but a different conclusion!

"The accurate solution of Poisson's equation by expansion in Chebyshev polynomials"
[Haidvogel \& Rang, 1979]

Chebyshev differentiation

Dale Haidvogel

- Concluded ADI is too slow to be practical!

A similar method in 1979

...but a different conclusion!

"The accurate solution of Poisson's equation by expansion in Chebyshev polynomials" [Haidvogel \& Zang, 1979]

Dale Haidvogel

- Concluded ADI is too slow to be practical!

Chebyshev differentiation

A similar method in 1979

...but a different conclusion!

"The accurate solution of Poisson's equation by expansion in Chebyshev polynomials" [Haidvogel \& Zang, 1979]

Dale Haidvogel

- Concluded ADI is too slow to be practical!

Chebyshev differentiation

Additional features

Our fast solver can also...
\checkmark exploit low rank right-hand sides using factored ADI
\checkmark handle arbitrary Dirichlet BCs
\checkmark handle more complex BCs (e.g. Neumann)
\checkmark apply to other strongly elliptic PDEs with nice spectra

Additional features

Alex Townsend
low-rank RHS \Rightarrow low-rank solution
\checkmark exploit low rank right-hand sides using factored ADI
\checkmark handle arbitrary Dirichlet BCs
\checkmark handle more complex BCs (e.g. Neumann)
\checkmark apply to other strongly elliptic PDEs with nice spectra

Additional features

Alex Townsend
low-rank RHS \Rightarrow low-rank solution
\checkmark exploit low rank right-hand sides using factored ADI
\checkmark handle arbitrary Dirichlet BCs
\checkmark handle more complex BCs (e.g. Neumann)
\checkmark apply to other strongly elliptic PDEs with nice spectra

Coming soon to Chebfun2!

Poisson on a quadrilateral

Poisson on a quadrilateral

A change of variables

Idea: Transform to $[-1,1]^{2}$ and discretize using a sparse spectral method

Poisson on a quadrilateral

A change of variables

Idea: Transform to $[-1,1]^{2}$ and discretize using a sparse spectral method

Poisson on a quadrilateral

A change of variables

Idea: Transform to $[-1,1]^{2}$ and discretize using a sparse spectral method

$$
\begin{gathered}
(\xi, \eta) \\
\text { not Poisson }
\end{gathered}
$$

Poisson on a quadrilateral

A change of variables

Idea: Transform to $[-1,1]^{2}$ and discretize using a sparse spectral method

(x, y)
Poisson

$$
\begin{gathered}
(\xi, \eta) \\
\text { not Poisson }
\end{gathered}
$$

Poisson on a quadrilateral

A change of variables

Idea: Transform to $[-1,1]^{2}$ and discretize using a sparse spectral method

(x, y)
Poisson

$$
u_{x x}+u_{y y}=f
$$

$$
\begin{gathered}
(\xi, \eta) \\
\text { not Poisson }
\end{gathered}
$$

$$
\begin{aligned}
& u_{\xi \xi}\left(\xi_{x}^{2}+\xi_{y}^{2}\right)+2 u_{\xi \eta}\left(\xi_{x} \eta_{x}+\xi_{y} \eta_{y}\right)+u_{\eta \eta}\left(\eta_{x}^{2}+\eta_{y}^{2}\right) \\
& +u_{\xi}\left(\xi_{x x}+\xi_{y y}\right)+u_{\eta}\left(\eta_{x x}+\eta_{y y}\right)=\tilde{f}
\end{aligned}
$$

Poisson on a quadrilateral

A change of variables

Idea: Transform to $[-1,1]^{2}$ and discretize using a sparse spectral method

$$
\begin{aligned}
& (\xi, \eta) \\
& \sum_{i=1}^{k} A_{i} X B_{i}^{T}=\tilde{F}
\end{aligned}
$$

Poisson on a quadrilateral

A change of variables

We can rewrite the matrix equation

$$
\sum_{i=1}^{k} A_{i} X B_{i}^{T}=F
$$

as a system of equations by introducing constraints:

$$
\sum_{i=1}^{k} A_{i} X_{i} B_{i}^{T}=F, \quad X_{1}=\cdots=X_{k}
$$

In matrix form this is

$$
\left[\begin{array}{cccc}
I & -I & & \\
& \ddots & \ddots & \\
& & I & -I \\
B_{1} \otimes A_{1} & B_{2} \otimes A_{2} & \cdots & B_{k} \otimes A_{k}
\end{array}\right]\left[\begin{array}{c}
X_{1}(:) \\
X_{2}(:) \\
\vdots \\
X_{k}(:)
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
F(:)
\end{array}\right]
$$

Poisson on a quadrilateral

A change of variables

Note that we can multiply this matrix by a vector fast without ever forming it, since A_{i} and B_{i} are sparse, almost-banded matrices.

$$
\left[\begin{array}{cccc}
I & -I & & \\
& \ddots & \ddots & \\
& & I & -I \\
B_{1} \otimes A_{1} & B_{2} \otimes A_{2} & \cdots & B_{k} \otimes A_{k}
\end{array}\right]\left[\begin{array}{c}
X_{1}(:) \\
X_{2}(:) \\
\vdots \\
X_{k}(:)
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
F(:)
\end{array}\right]
$$

This motivates us to use an iterative Krylov method.
To obtain convergence independent of p, we will need a good preconditioner.

Preconditioning

Finding a good preconditioner to solve a given sparse linear system is often viewed as a combination of art and science.

- Yousef Saad

Preconditioning

Note that the block LU decomposition of the matrix is easy to compute:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
I & -I & & \\
& \ddots & \ddots & \\
& & I & -I \\
B_{1} \otimes A_{1} & B_{2} \otimes A_{2} & \cdots & B_{k} \otimes A_{k}
\end{array}\right]=} \\
& {\left[\begin{array}{cccc}
I & & & \\
& \ddots & & \\
B_{1} \otimes A_{1} & \sum_{i=1}^{2} B_{i} \otimes A_{i} & \cdots & \sum_{i=1}^{k} B_{i} \otimes A_{i}
\end{array}\right]\left[\begin{array}{cccc}
I & -I & & \\
& \ddots & \ddots & \\
& & \ddots & -1 \\
& & & I
\end{array}\right]}
\end{aligned}
$$

Preconditioning

Note that the block LU decomposition of the matrix is easy to compute:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
I & -I & & \\
& \ddots & \ddots & \\
& & I & -I \\
B_{1} \otimes A_{1} & B_{2} \otimes A_{2} & \cdots & B_{k} \otimes A_{k}
\end{array}\right] \approx} \\
& {\left[\begin{array}{cccc}
I & & & \\
& \ddots & & \\
B_{1} \otimes A_{1} & B_{1} \otimes A_{1} & \cdots & B_{1} \otimes A_{1}
\end{array}\right]\left[\begin{array}{cccc}
I & -I & & \\
\ddots & \ddots & \\
& & \ddots & -I \\
& & I
\end{array}\right]=P}
\end{aligned}
$$

Preconditioning

Note that the block LU decomposition of the matrix is easy to compute:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
I & -I & & \\
& \ddots & \ddots & \\
& & I & -I \\
B_{1} \otimes A_{1} & B_{2} \otimes A_{2} & \cdots & B_{k} \otimes A_{k}
\end{array}\right] \approx} \\
& {\left[\begin{array}{cccc}
I & & & \\
& \ddots & & \\
B_{1} \otimes A_{1} & B_{1} \otimes A_{1} & \cdots & B_{1} \otimes A_{1}
\end{array}\right]\left[\begin{array}{cccc}
I & -I & & \\
& \ddots & \ddots & \\
& & \ddots & -I \\
& & I
\end{array}\right]=P}
\end{aligned}
$$

$P^{-1} v$ can be computed in $\mathcal{O}\left(p^{2} k\right)$ time.

Preconditioning

Does it work?

Preconditioning

Does it work?

Preconditioning

Does it work?

Poisson on a convex polygon

A simple decomposition

Duffy transform? Introduces singularity

Instead, divide any convex k-polygon into k quadrilaterals

An optimal complexity spectral element method

The elements of an element method
\checkmark An element solver (local)

- An interface solver (global)

- boundary
- interface
element

The Schur complement method

Suppose we wish to solve a PDE $A u=f$ on two glued squares:

We can separate the interface unknowns from the subdomain interiors and write the PDE as

$$
\left[\begin{array}{lll}
A_{11} & & A_{1 \Gamma} \\
& A_{22} & A_{2 \Gamma} \\
A_{\Gamma 1} & A_{\Gamma 2} & A_{\Gamma \Gamma}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{\Gamma}
\end{array}\right]=\left[\begin{array}{l}
f_{1} \\
f_{2} \\
f_{\Gamma}
\end{array}\right]
$$

which ensures continuity and continuity of the derivative across Γ with
$A_{\Gamma *}=$ evaluate normal derivative, $\quad A_{* \Gamma}=$ inject boundary data

The Schur complement method

Suppose we wish to solve a PDE $A u=f$ on two glued squares:

We can find the values on the interface by solving the smaller system

$$
\Sigma u_{\Gamma}=f_{\Gamma}-A_{\Gamma 1} A_{11}^{-1} f_{1}-A_{\Gamma 2} A_{22}^{-1} f_{2}
$$

where

$$
\Sigma=A_{\ulcorner\Gamma}-A_{\Gamma 1} A_{11}^{-1} A_{1 \Gamma}-A_{\ulcorner 2} A_{22}^{-1} A_{2 \Gamma}
$$

is called the Schur complement of $A_{\Gamma \Gamma}$. Once we know u_{Γ} we can find the interior values by solving

$$
A_{11} u_{1}=f_{1}-A_{1 \Gamma} u_{\Gamma}, \quad A_{22} u_{2}=f_{2}-A_{2 \Gamma} u_{\Gamma}
$$

The Schur complement method

Suppose we wish to solve a PDE $A u=f$ on two glued squares:

The inverse operator is therefore

$$
A^{-1}=\left[\begin{array}{lll}
I & -A_{11}^{-1} A_{1 \Gamma} \\
& I & -A_{22}^{-1} A_{2 \Gamma} \\
& & I
\end{array}\right]\left[\begin{array}{lll}
A_{11}^{-1} & & \\
& A_{22}^{-1} & \\
& & \Sigma^{-1}
\end{array}\right]\left[\begin{array}{ccc}
I & & \\
-A_{\Gamma 1} A_{11}^{-1} & -A_{\Gamma 2} A_{22}^{-1} & I
\end{array}\right]
$$

where

$$
\Sigma=A_{\ulcorner\Gamma}-A_{\Gamma 1} A_{11}^{-1} A_{1 \Gamma}-A_{\ulcorner 2} A_{22}^{-1} A_{2 \Gamma}
$$

The Schur complement method

The inverse can be factored as

$$
\begin{aligned}
& A^{-1}=\left[\begin{array}{lll}
A_{11}^{-1} & & \\
& A_{22}^{-1} & \\
& & I
\end{array}\right]\left[\begin{array}{ccc}
I & & -A_{1 \Gamma} \\
& I & -A_{2 \Gamma} \\
& & I
\end{array}\right]\left[\begin{array}{lll}
A_{11} & & \\
& A_{22} & \\
& & \Sigma^{-1}
\end{array}\right]\left[\begin{array}{ccc}
I & & \\
& I & \\
-A_{\Gamma 1} & -A_{\Gamma 2} & I
\end{array}\right]\left[\begin{array}{lll}
A_{11}^{-1} & & \\
& A_{22}^{-1} & \\
& & I
\end{array}\right] \\
& =\left[\begin{array}{lll}
A_{11}^{-1} & & \\
& A_{22}^{-1} & \\
& & I
\end{array}\right]\left[\begin{array}{ccc}
I & -A_{1 \Gamma} \\
& I & -A_{25} \\
& & I
\end{array}\right]\left[\begin{array}{lll}
I & & \\
& I & \\
& & \Sigma^{-1}
\end{array}\right]\left\{I+\left[\begin{array}{ccc}
I & & \\
-A_{\Gamma 1} & -A_{\Gamma 2} & I
\end{array}\right]\left[\begin{array}{lll}
A_{11}^{-1} & & \\
& A_{22}^{-1} & \\
& & I
\end{array}\right]\right\} \\
& \approx\left[\begin{array}{lll}
A_{11}^{\dagger} & & \\
& A_{22}^{\dagger} & \\
& & I
\end{array}\right]\left[\begin{array}{ccc}
1 & & -A_{1 \Gamma} \\
& I & -A_{2 \Gamma} \\
& & I
\end{array}\right]\left[\begin{array}{lll}
I & & \\
& I & \\
& & \Sigma
\end{array}\right]\left\{I+\left[\begin{array}{ccc}
1 & & \\
& & I \\
-A_{\Gamma 1} & -A_{\Gamma 2} & I
\end{array}\right]\left[\begin{array}{lll}
A_{11}^{\dagger} & & \\
& A_{22}^{\dagger} & \\
& & I
\end{array}\right]\right\}
\end{aligned}
$$

where ${ }^{\dagger}$ denotes an approximate inverse.

This extends naturally to k subdomains.

The Schur complement method

An algorithm

(1) Solve subproblems:

$$
\left.\begin{array}{c}
A_{11} \hat{u}_{1}=f_{1} \\
\vdots \\
A_{k k} \hat{u}_{k}=f_{k}
\end{array}\right\} \text { zero Dirichlet BCs }
$$

(2) Solve interface problem:

$$
\Sigma u_{\Gamma}=f_{\Gamma}-A_{\Gamma 1} \hat{u}_{1}-\cdots-A_{\Gamma k} \hat{u}_{k} .
$$

(3) Solve subproblems:

$$
\left.\begin{array}{c}
A_{11} u_{1}=f_{1} \\
\vdots \\
A_{k k} u_{k}=f_{k}
\end{array}\right\} u_{\Gamma} \text { Dirichlet BCs }
$$

The Schur complement method

An algorithm

(1) Solve subproblems:

$$
\left.\begin{array}{c}
A_{11} \hat{u}_{1}=f_{1} \\
\vdots \\
A_{k k} \hat{u}_{k}=f_{k}
\end{array}\right\} \text { zero Dirichlet BCs }
$$

(2) Solve interface problem: $\quad \Sigma u_{\Gamma}=f_{\Gamma}-A_{\Gamma 1} \hat{u}_{1}-\cdots-A_{\Gamma k} \hat{u}_{k}$.
(3) Solve subproblems:

$$
\left.\begin{array}{c}
A_{11} u_{1}=f_{1} \\
\vdots \\
A_{k k} u_{k}=f_{k}
\end{array}\right\} u_{r} \text { Dirichlet BCs }
$$

We have a fast solver for © \& © . Note that \& © can be parallelized as well. It remains to solve (2) fast.

The Schur complement method

An algorithm

Note that we can apply Σ to a vector fast without explicitly constructing it since

$$
\begin{aligned}
\Sigma u_{\Gamma} & =\left(A_{\Gamma \Gamma}-A_{\Gamma 1} A_{11}^{-1} A_{1 \Gamma}-\cdots-A_{\Gamma k} A_{k k}^{-1} A_{k \Gamma}\right) u_{\Gamma} \\
& =A_{\Gamma \Gamma} u_{\Gamma}-\mathrm{D}_{2} \mathrm{~N}_{1}\left(u_{\Gamma}\right)-\cdots-{\mathrm{D} 2 N_{k}}\left(u_{\Gamma}\right)
\end{aligned}
$$

where D2N $_{i}$ is the Dirichlet-to-Neumann map for subdomain i, which does:
\square Solve $A_{i j} u_{i}=0$ with u_{Γ} Dirichlet BC

- Evaluate the normal derivative of u_{i} on Γ
$\mathrm{D} 2 \mathrm{~N}_{i}\left(u_{\Gamma}\right)$ takes $\mathcal{O}\left(p^{2} \log p\right)$ and $A_{\Gamma \Gamma} u_{\Gamma}$ takes $\mathcal{O}\left(p^{2}\right)$.

The Schur complement method

An algorithm

Note that we can apply Σ to a vector fast without explicitly constructing it since

$$
\begin{aligned}
\Sigma u_{\Gamma} & =\left(A_{\Gamma \Gamma}-A_{\Gamma 1} A_{11}^{-1} A_{1 \Gamma}-\cdots-A_{\Gamma k} A_{k k}^{-1} A_{k \Gamma}\right) u_{\Gamma} \\
& =A_{\Gamma \Gamma} u_{\Gamma}-\mathrm{D} 2 \mathrm{~N}_{1}\left(u_{\Gamma}\right)-\cdots-\mathrm{D}_{2} \mathrm{~N}_{k}\left(u_{\Gamma}\right)
\end{aligned}
$$

where $\mathrm{D}^{2} \mathrm{~N}_{i}$ is the Dirichlet-to-Neumann map for subdomain i, which does:

- Solve $A_{i j} u_{i}=0$ with u_{Γ} Dirichlet BC
- Evaluate the normal derivative of u_{i} on Γ
$\mathrm{D} 2 \mathrm{~N}_{i}\left(u_{\Gamma}\right)$ takes $\mathcal{O}\left(p^{2} \log p\right)$ and $A_{\ulcorner\ulcorner } u_{\Gamma}$ takes $\mathcal{O}\left(p^{2}\right)$. We wish to solve

$$
\Sigma u_{\Gamma}=f_{\Gamma}-A_{\Gamma 1} \hat{u}_{1}-\cdots-A_{\Gamma k} \hat{u}_{k}
$$

approximately via an iterative method, and use it to design a preconditioner for the global problem, $A^{\dagger} \approx A^{-1}$.

An optimal complexity spectral element method

The elements of an element method
\checkmark An element solver (local)
? An interface solver (global)

Need a good preconditioner for Σ !

- boundary
- interface
element

```
ultraSEM
An open-source spectral element library
```

- Optimal complexity in h and $p: \mathcal{O}\left(p^{2} / h^{2}\right)$
- True, automatic $h p$-adaptivity (without concern of ill-conditioning or cost)
- Solution of uniformly elliptic PDEs with general boundary conditions
- High accuracy on elements independent of their aspect ratio
- Ability to handle unstructured meshes of arbitrary convex polygons
- High parallelizability

ultraSEM
 An open-source spectral element library

```
import ultraSEM
mesh = ultraSEM.mesh(pts, tri) # create mesh
pdo = ultraSEM.pdo(1, 0, 0) # define Poisson
f = 1
bc = 0
S = ultraSEM.solver(mesh, pdo) # build the solver
u = S.solve(f, bc) # solve the PDE
```


Discontinuous Galerkin methods

Discontinuous Galerkin?

What is it? Why would I use it?

Discontinuous Galerkin?

What is it? Why would I use it?
"finite volume"
Discontinuous

Discontinuous Galerkin?

What is it? Why would I use it?
"finite volume"
Discontinuous
"finite element" Galerkin

Discontinuous Galerkin?

What is it? Why would I use it?

$$
\begin{aligned}
& \text { "finite volume" }+ \text { "finite element" } \\
& \text { Discontinuous } \quad \text { Galerkin }
\end{aligned}
$$

	Complex geometry	High-order accuracy and $h p$-adaptivity	Explicit semi- discrete form	Stability for conservation laws	Elliptic problems
FD	\times	\checkmark	\checkmark	\checkmark	\checkmark
FV	\checkmark	\times	\checkmark	\checkmark	(\checkmark)
FEM	\checkmark	\checkmark	\times	\times	\checkmark
DG	\checkmark	\checkmark	\checkmark	\checkmark	(\checkmark)

Eulerian fluid-structure interaction

Motivation

The natural choices for fluid and solid representation conflict:

Fluid simulation

Interested in velocity

Track on fixed grid

Solid simulation

Interested in displacement

Move mesh with material
Lagrangian

Eulerian fluid-structure interaction

Motivation

The natural choices for fluid and solid representation conflict:

Fluid simulation

Interested in velocity

Track on fixed grid
Eulerian

Solid simulation

Interested in displacement

Move mesh with material
Lagrangian

Eulerian fluid-structure interaction

The reference map technique
The motion function χ maps the undeformed reference state to the deformed state:

$$
\boldsymbol{x}=\boldsymbol{\chi}(\boldsymbol{X}, t)
$$

Eulerian conservation of mass:

$$
\rho_{t}=\boldsymbol{u} \cdot \nabla \rho-\rho \nabla \cdot \boldsymbol{u}
$$

Euler conservation of momentum:

$$
\boldsymbol{u}_{t}=-\boldsymbol{u} \cdot \nabla \boldsymbol{u}-\frac{\nabla \cdot \boldsymbol{\sigma}+\rho \boldsymbol{g}}{\rho}
$$

The deformation gradient is then

$$
\boldsymbol{F}(\boldsymbol{X}, t)=\frac{\partial \boldsymbol{\chi}(\boldsymbol{X}, t)}{\partial \boldsymbol{X}}
$$

Eulerian fluid-structure interaction

The reference map technique
Define the reference map ξ to map the deformed state to the reference state:

$$
\boldsymbol{X}=\boldsymbol{\xi}(\boldsymbol{x}, t)=\chi^{-1}(\boldsymbol{x}, t)
$$

Then we can write the deformation gradient as

$$
\boldsymbol{F}(\boldsymbol{\xi}(\boldsymbol{x}, t), t)=(\nabla \boldsymbol{\xi}(\boldsymbol{x}, t))^{-1}
$$

Large deformation constitutive relations can be simulated since $\boldsymbol{\xi} \rightarrow \boldsymbol{F} \rightarrow \boldsymbol{\sigma}$.
The original location of a material point never changes, so ξ obeys

$$
\xi_{t}+\boldsymbol{u} \cdot \nabla \xi=0
$$

Interface between solid and fluid is tracked by a level set but phase change is blurred. A transition zone between the two allows for simpler computations.

Eulerian fluid-structure interaction

The reference map technique

Eulerian fluid-structure interaction

Current limitations

- finite differences
- high-order accuracy possible but not practical as stencil size increases
- interface is blurred
- relies on grid refinement for accuracy
- requires extrapolation of reference map outside of the solid
- can lead to artifacts

Eulerian fluid-structure interaction

Current limitations

- finite differences
- high-order accuracy possible but not practical as stencil size increases
- interface is blurred
- relies on grid refinement for accuracy
- requires extrapolation of reference map outside of the solid
- can lead to artifacts

Can we use discontinuous Galerkin methods instead?

Implicit mesh DG

A new hope

Traditional DG methods rely on an unstructured mesh to capture geometry.
For an Eulerian method, we'd like to:

- store unknowns on a fixed background grid
- represent geometry using implicitly defined level sets

Can DG do this?

Implicit mesh DG

A new hope

Traditional DG methods rely on an unstructured mesh to capture geometry.
For an Eulerian method, we'd like to:

- store unknowns on a fixed background grid
- represent geometry using implicitly defined level sets

Can DG do this? Yes!

Implicit mesh DG

A new hope

Traditional DG methods rely on an unstructured mesh to capture geometry.
For an Eulerian method, we'd like to:

- store unknowns on a fixed background grid
- represent geometry using implicitly defined level sets

Can DG do this? Yes!

Elements are defined based on level sets

Robert Saye

Implicitly defined mesh elements

Implicit mesh DG

A new hope

Traditional DG methods rely on an unstructured mesh to capture geometry.
For an Eulerian method, we'd like to:

- store unknowns on a fixed background grid
- represent geometry using implicitly defined level sets

Can DG do this? Yes!

High-order quadrature rules are computed based on 1D root-finding

[Saye, 2015]

Discontinuous Galerkin

Notation

Given a mesh \mathcal{T}_{h}, we introduce the following approximation spaces:

$$
\begin{array}{rlrl}
W_{h}^{p} & =\left\{\boldsymbol{w} \in L^{2}\left(\mathcal{T}_{h}\right) \quad:\left.w\right|_{K} \in \mathcal{P}^{p}(K)\right. & \left.\forall K \in \mathcal{T}_{h}\right\} \\
\boldsymbol{V}_{h}^{p} & =\left\{\boldsymbol{v} \in\left[L^{2}\left(\mathcal{T}_{h}\right)\right]^{d}:\left.\boldsymbol{v}\right|_{K} \in\left[\mathcal{P}^{p}(K)\right]^{d} \forall K \in \mathcal{T}_{h}\right\}
\end{array}
$$

The L^{2} inner products over an element K are given by

$$
(w, v)_{K}=\int_{K} w v, \quad(\boldsymbol{w}, \boldsymbol{v})_{K}=\sum_{i=1}^{d}\left(w_{i}, v_{i}\right)_{K}, \quad\langle\eta, \mu\rangle_{\partial K}=\int_{\partial K} \eta \mu,
$$

and we define inner products over the mesh as

$$
(\boldsymbol{w}, \boldsymbol{v})_{\mathcal{T}_{h}}=\sum_{K \in \mathcal{T}_{h}}(\boldsymbol{w}, \boldsymbol{v})_{K}, \quad(\boldsymbol{w}, \boldsymbol{v})_{\mathcal{T}_{h}}=\sum_{K \in \mathcal{T}_{h}}(\boldsymbol{w}, \boldsymbol{v})_{K}, \quad\langle\eta, \mu\rangle_{\mathcal{T}_{h}}=\sum_{K \in \mathcal{T}_{h}}\langle\eta, \mu\rangle_{\partial K} .
$$

Discontinuous Galerkin

Notation

$W_{h}^{p}=\left\{w \in L^{2}\left(\mathcal{T}_{h}\right)\right.$

The L^{2} inner products over an element K are given by

$$
(w, v)_{K}=\int_{K} w v, \quad(\boldsymbol{w}, \boldsymbol{v})_{K}=\sum_{i=1}^{d}\left(w_{i}, v_{i}\right)_{K}, \quad\langle\eta, \mu\rangle_{\partial K}=\int_{\partial K} \eta \mu,
$$

and we define inner products over the mesh as

$$
(\boldsymbol{w}, \boldsymbol{v})_{\mathcal{T}_{h}}=\sum_{K \in \mathcal{T}_{h}}(\boldsymbol{w}, \boldsymbol{v})_{K}, \quad(\boldsymbol{w}, \boldsymbol{v})_{\mathcal{T}_{h}}=\sum_{K \in \mathcal{T}_{h}}(\boldsymbol{w}, \boldsymbol{v})_{K}, \quad\langle\eta, \mu\rangle_{\mathcal{T}_{h}}=\sum_{K \in \mathcal{T}_{h}}\langle\eta, \mu\rangle_{\partial K}
$$

Eulerian fluid-structure interaction

A discontinuous Galerkin method

We wish to solve the reference map equation

$$
\begin{equation*}
\xi_{t}+\boldsymbol{u} \cdot \nabla \boldsymbol{\xi}=0 \tag{1}
\end{equation*}
$$

for $\boldsymbol{\xi}(\boldsymbol{x}, t)$ using DG, where for now we assume that $\boldsymbol{u}=\boldsymbol{u}(\boldsymbol{x})$ is given. We can write (1) in conservative form as

$$
\xi_{t}+\nabla \cdot(\boldsymbol{u} \boldsymbol{\xi})=(\nabla \cdot \boldsymbol{u}) \boldsymbol{\xi}
$$

or, more explicity,

$$
\begin{aligned}
& \frac{\partial \xi_{1}}{\partial t}+\nabla \cdot\left(\boldsymbol{u} \xi_{1}\right)=(\nabla \cdot \boldsymbol{u}) \xi_{1} \\
& \frac{\partial \xi_{2}}{\partial t}+\nabla \cdot\left(\boldsymbol{u} \xi_{2}\right)=(\nabla \cdot \boldsymbol{u}) \xi_{2}
\end{aligned}
$$

Eulerian fluid-structure interaction

A discontinuous Galerkin method

Let K be an element in a mesh \mathcal{T}_{h}. To derive the weak form, we multiply by a test function $w \in W_{h}^{p}$ and integrate by parts to obtain:

$$
\begin{aligned}
& \left(\frac{\partial \xi_{1}}{\partial t}, \boldsymbol{w}\right)_{K}-\left(\boldsymbol{u} \xi_{1}, \nabla \boldsymbol{w}\right)_{K}+\left\langle\boldsymbol{u} \xi_{1} \cdot \boldsymbol{n}, \boldsymbol{w}\right\rangle_{\partial K}=\left((\nabla \cdot \boldsymbol{u}) \xi_{1}, \boldsymbol{w}\right)_{K} \\
& \left(\frac{\partial \xi_{2}}{\partial t}, \boldsymbol{w}\right)_{K}-\left(\boldsymbol{u} \xi_{2}, \nabla \boldsymbol{w}\right)_{K}+\left\langle\boldsymbol{u} \xi_{2} \cdot \boldsymbol{n}, \boldsymbol{w}\right\rangle_{\partial K}=\left((\nabla \cdot \boldsymbol{u}) \xi_{2}, \boldsymbol{w}\right)_{K}
\end{aligned}
$$

We now make the following approximations:

- Replace ξ with $\xi_{h} \in V_{h}^{p}$ in the bulk
- Replace $\boldsymbol{u} \boldsymbol{\xi}$ with a numerical flux ${\widehat{\boldsymbol{u} \xi_{n}}}$ on the boundary
- Define $\widehat{\boldsymbol{u} \xi_{h}}$ in terms of ξ_{h}
- Sum over all elements $K \in \mathcal{T}_{h}$

Eulerian fluid-structure interaction

A discontinuous Galerkin method

Find $\xi_{h} \in \boldsymbol{V}_{h}^{p}$ such that

$$
\begin{aligned}
& \left(\frac{\partial \xi_{h}^{1}}{\partial t}, w\right)_{\mathcal{T}_{h}}-\left(\boldsymbol{u} \xi_{h}^{1}, \nabla w\right)_{\mathcal{T}_{h}}+\left\langle\widehat{\boldsymbol{u} \xi_{h}^{1}} \cdot \boldsymbol{n}, w\right\rangle_{\partial \mathcal{T}_{h}}=\left((\nabla \cdot \boldsymbol{u}) \xi_{h}^{1}, w\right)_{\mathcal{T}_{h}} \\
& \left(\frac{\partial \xi_{h}^{2}}{\partial t}, w\right)_{\mathcal{T}_{h}}-\left(\boldsymbol{u} \xi_{h}^{2}, \nabla w\right)_{\mathcal{T}_{h}}+\left\langle\widehat{\boldsymbol{u} \xi_{h}^{2}} \cdot \boldsymbol{n}, w\right\rangle_{\partial \mathcal{T}_{h}}=\left((\nabla \cdot \boldsymbol{u}) \xi_{h}^{2}, w\right)_{\mathcal{T}_{h}}
\end{aligned}
$$

for all $w \in W_{h}^{p}$. To complete the method, we still need to define the numerical flux ${\widehat{\boldsymbol{u}} \boldsymbol{\xi}_{h} \text {. A natural choice for linear convection is the upwind flux: }}_{\text {a }}$

$$
\widehat{\boldsymbol{u} \xi_{h}}=\frac{1}{2}(\boldsymbol{u} \cdot \boldsymbol{n})\left(\xi_{h}^{+}+\xi_{h}^{-}\right)+\frac{1}{2}|\boldsymbol{u} \cdot \boldsymbol{n}|\left(\boldsymbol{\xi}_{h}^{+}-\boldsymbol{\xi}_{h}^{-}\right)
$$

where $\xi_{h}^{ \pm}$denotes the solution on neighboring elements $K^{ \pm}$of each face in $\partial \mathcal{T}_{h}$.

Eulerian fluid-structure interaction

An incompressible test case

Consider the incompressible velocity field

$$
\boldsymbol{u}(\boldsymbol{x}, t)=\binom{b \sin a x \cos b y \sin c t}{-a \cos a x \sin b y \sin c t}
$$

Since \boldsymbol{u} is incompressible, the right-hand side of (1) drops out. So we wish to solve

$$
\boldsymbol{\xi}_{t}+\nabla \cdot(\boldsymbol{u} \boldsymbol{\xi})=0
$$

with initial condition $\boldsymbol{\xi}(\boldsymbol{x}, 0)=\boldsymbol{x}$.

Eulerian fluid-structure interaction

An incompressible test case

It can be shown that an exact solution is given by

$$
\boldsymbol{\xi}(\boldsymbol{x}, t)=\binom{\frac{1}{2} \cos ^{-1}(k(\boldsymbol{x}) \operatorname{cd}(\psi(\boldsymbol{x}, t)))}{\frac{1}{b} \cos ^{-1}(k(\boldsymbol{x}) \operatorname{sn}(\psi(\boldsymbol{x}, t)))}
$$

where $\psi=F(\phi, k)+\frac{a b(1-\cos c t)}{c}, k=\sqrt{1-\sin ^{2} a x \sin ^{2} b y}, \phi=\sin ^{-1} \frac{\cos b y}{k}, c d \& s n ~ a r e$ Jacobi elliptic functions, and F is the incomplete elliptic integral of the first kind.

Eulerian fluid-structure interaction

An incompressible test case

Exact solution

Computed solution

Eulerian fluid-structure interaction

What about the fluid?
Incompressible Navier-Stokes:

$$
\begin{align*}
\rho\left(\boldsymbol{u}_{t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}\right) & =-\nabla p+\mu \nabla^{2} \boldsymbol{u}+\boldsymbol{f}, & & \text { in } \Omega, \tag{2}\\
\nabla \cdot \boldsymbol{u} & =0, & & \text { in } \Omega . \tag{3}
\end{align*}
$$

We'd like to advance (2) in time while maintaining (3).

Eulerian fluid-structure interaction

What about the fluid?
Incompressible Navier-Stokes:

$$
\begin{array}{rlrl}
\rho\left(\boldsymbol{u}_{t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}\right) & =-\nabla p+\mu \nabla^{2} \boldsymbol{u}+\boldsymbol{f}, & \text { in } \Omega, \\
\nabla \cdot \boldsymbol{u} & =0, & & \text { in } \Omega . \tag{3}
\end{array}
$$

We'd like to advance (2) in time while maintaining (3).

Eulerian fluid-structure interaction

What about the fluid?

Incompressible Navier-Stokes:

$$
\begin{align*}
\rho\left(\boldsymbol{u}_{t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}\right) & =-\nabla p+\mu \nabla^{2} \boldsymbol{u}+\boldsymbol{f}, & \text { in } \Omega, \\
\nabla \cdot \boldsymbol{u} & =0, & \text { in } \Omega . \tag{2}
\end{align*}
$$

We'd like to advance (2) in time while maintaining (3).

Projection method:

1. Compute an intermediate velocity $\boldsymbol{u}^{*}: \frac{\boldsymbol{u}^{*}-\boldsymbol{u}^{n}}{\Delta t}=-\left(\boldsymbol{u}^{n} \cdot \nabla\right) \boldsymbol{u}^{n}+\mu \nabla^{2} \boldsymbol{u}+\frac{\boldsymbol{f}}{\rho}$
2. Solve for the pressure that will maintain (3): $\nabla \cdot\left(\frac{\nabla p^{n+1}}{\rho}\right)=\frac{\nabla \cdot \boldsymbol{u}^{*}}{\Delta t}$
3. Compute \boldsymbol{u}^{n+1} to be divergence-free: $\frac{\boldsymbol{u}^{n+1}-\boldsymbol{u}^{*}}{\Delta t}=-\frac{\nabla p^{n+1}}{\rho}$

Eulerian fluid-structure interaction

What about the fluid?
We'd like to maintain high-order accuracy when coupling to a solid. However, fractional stepping of \boldsymbol{u}...

Eulerian fluid-structure interaction

What about the fluid?

We'd like to maintain high-order accuracy when coupling to a solid. However, fractional stepping of \boldsymbol{u}...

- creates nonphysical coupling between velocity, pressure, and interface
- can limit the order of accuracy

Eulerian fluid-structure interaction

What about the fluid?

We'd like to maintain high-order accuracy when coupling to a solid. However, fractional stepping of \boldsymbol{u}...

- creates nonphysical coupling between velocity, pressure, and interface
- can limit the order of accuracy
- assumes evolution in time at a fixed point in space is smooth
- not true where interface changes

Eulerian fluid-structure interaction

What about the fluid?

We'd like to maintain high-order accuracy when coupling to a solid. However, fractional stepping of \boldsymbol{u}...

- creates nonphysical coupling between velocity, pressure, and interface
- can limit the order of accuracy
- assumes evolution in time at a fixed point in space is smooth
- not true where interface changes

Gauge method: reformulate (2) \& (3) to solve for a scalar field ϕ and an auxiliary vector field \boldsymbol{m} whose divergence-free component is \boldsymbol{u}.

$$
\begin{aligned}
\rho\left(\boldsymbol{m}_{t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}\right) & =\mu \nabla^{2} \boldsymbol{m}+\boldsymbol{f}, & & \text { in } \Omega \\
\boldsymbol{u} & =\boldsymbol{m}-\nabla \phi, & & \text { in } \Omega \\
\nabla^{2} \phi & =\nabla \cdot \boldsymbol{m}, & & \text { in } \Omega
\end{aligned}
$$

\boldsymbol{u} is recovered at every instant in time from \boldsymbol{m} and $\phi \rightarrow$ weaker coupling!

Eulerian fluid-structure interaction

What about the fluid?

Where's the pressure?
If \boldsymbol{m} and ϕ solve the gauge formulation, then \boldsymbol{u} solves

$$
\begin{aligned}
\left(\boldsymbol{u}_{t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}\right) & =-\nabla\left(\rho \phi_{t}-\mu \nabla^{2} \phi\right)+\mu \nabla^{2} \boldsymbol{u}+\boldsymbol{f}, & & \text { in } \Omega \\
\nabla \cdot \boldsymbol{u} & =0, & & \text { in } \Omega
\end{aligned}
$$

So \boldsymbol{u} solves Navier-Stokes with pressure identified (up to a constant) as

$$
p=\rho \phi_{t}-\mu \nabla^{2} \phi .
$$

Eulerian fluid-structure interaction

What about the fluid?

Where's the pressure?
If \boldsymbol{m} and ϕ solve the gauge formulation, then \boldsymbol{u} solves

$$
\begin{aligned}
\left(\boldsymbol{u}_{t}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}\right) & =-\nabla\left(\rho \phi_{t}-\mu \nabla^{2} \phi\right)+\mu \nabla^{2} \boldsymbol{u}+\boldsymbol{f}, & & \text { in } \Omega \\
\nabla \cdot \boldsymbol{u} & =0, & & \text { in } \Omega
\end{aligned}
$$

So \boldsymbol{u} solves Navier-Stokes with pressure identified (up to a constant) as

$$
p=\rho \phi_{t}-\mu \nabla^{2} \phi .
$$

Boundary conditions are imposed as

$$
\begin{aligned}
\boldsymbol{m} \cdot \boldsymbol{n} & =\boldsymbol{u}_{D} \cdot \boldsymbol{n}, & & \text { on } \partial \Omega \\
\boldsymbol{m} \cdot \boldsymbol{\tau} & =\boldsymbol{u}_{D} \cdot \boldsymbol{\tau}+\nabla \phi \cdot \boldsymbol{\tau}, & & \text { on } \partial \Omega \\
\nabla \phi \cdot \boldsymbol{n} & =0, & & \text { on } \partial \Omega .
\end{aligned}
$$

A multistep method is used to impose the boundary conditions on \boldsymbol{m} and ϕ.

Eulerian fluid-structure interaction

What about the fluid?

Both projection and gauge methods need a way to solve Poisson problems.

The DG framework naturally allows for this!

Discontinuous Galerkin for elliptic problems

Consider Poisson's equation on a domain Ω,

$$
\begin{array}{rlrl}
-\nabla^{2} u & =f, & & \text { in } \Omega \\
u & =0, & \text { on } \partial \Omega
\end{array}
$$

We can rewrite this as a first-order system:

$$
\begin{aligned}
\boldsymbol{q}-\nabla u & =0, & & \text { in } \Omega \\
-\nabla \cdot \boldsymbol{q} & =f, & & \text { in } \Omega \\
u & =0, & & \text { in } \partial \Omega
\end{aligned}
$$

A DG method aims to find functions u_{h} and \boldsymbol{q}_{h} in some polynomial space which approximate the solutions u and \boldsymbol{q} on each element.

Discontinuous Galerkin for elliptic problems

The weak formulation
Let K be an element in \mathcal{T}_{h} and consider the Poisson system over K,

$$
\begin{aligned}
\boldsymbol{q}-\nabla u=0, & \text { in } K \\
-\nabla \cdot \boldsymbol{q}=f, & \text { in } K
\end{aligned}
$$

To obtain the weak form, we multiply by test functions $(\boldsymbol{v}, \boldsymbol{w}) \in \boldsymbol{V}_{h}^{p} \times W_{h}^{p}$ and integrate by parts to obtain:

$$
\begin{aligned}
(\boldsymbol{q}, \boldsymbol{v})_{K}+(\boldsymbol{u}, \nabla \cdot \boldsymbol{v})_{K}-\langle\boldsymbol{u}, \boldsymbol{v} \cdot \boldsymbol{n}\rangle_{\partial K} & =0 \\
(\boldsymbol{q}, \nabla w)_{K}-\langle\boldsymbol{q} \cdot \boldsymbol{n}, \boldsymbol{w}\rangle_{\partial K} & =(f, w)_{K}
\end{aligned}
$$

Discontinuous Galerkin for elliptic problems

The weak formulation

Let K be an element in \mathcal{T}_{h} and consider the Poisson system over K,

$$
\begin{aligned}
\boldsymbol{q}-\nabla u=0, & \text { in } K \\
-\nabla \cdot \boldsymbol{q}=f, & \text { in } K
\end{aligned}
$$

To obtain the weak form, we multiply by test functions $(\boldsymbol{v}, \boldsymbol{w}) \in \boldsymbol{V}_{h}^{p} \times W_{h}^{p}$ and integrate by parts to obtain:

$$
\begin{aligned}
(\boldsymbol{q}, \boldsymbol{v})_{K}+(\boldsymbol{u}, \nabla \cdot \boldsymbol{v})_{K}-\langle\boldsymbol{u}, \boldsymbol{v} \cdot \boldsymbol{n}\rangle_{\partial K} & =0 \\
\quad(\boldsymbol{q}, \nabla w)_{K}-\langle\boldsymbol{q} \cdot \boldsymbol{n}, \boldsymbol{w}\rangle_{\partial K} & =(f, w)_{K}
\end{aligned}
$$

We now make the following approximations:

- Replace (\boldsymbol{q}, u) with $\left(\boldsymbol{q}_{h}, u_{h}\right) \in \boldsymbol{V}_{h}^{p} \times W_{h}^{p}$ in the bulk
\square Replace (\boldsymbol{q}, u) with $\left(\hat{\boldsymbol{q}}_{h}, \hat{u}_{h}\right)$ on the boundary
- Define $\left(\hat{\boldsymbol{q}}_{h}, \hat{u}_{h}\right)$ in terms of $\left(\boldsymbol{q}_{h}, u_{h}\right)$

Discontinuous Galerkin for elliptic problems

The weak formulation
Find $\left(\boldsymbol{q}_{h}, u_{h}\right)$ such that

$$
\begin{aligned}
\left(\boldsymbol{q}_{h}, \boldsymbol{v}\right)_{K}+ & \left(u_{h}, \nabla \cdot \boldsymbol{v}\right)_{K}-\left\langle\hat{u}_{h}, \boldsymbol{v} \cdot \boldsymbol{n}\right\rangle_{\partial K}
\end{aligned}=0 \quad \begin{aligned}
\left(\boldsymbol{q}_{h}, \nabla w\right)_{K}-\left\langle\hat{\boldsymbol{q}}_{h} \cdot \boldsymbol{n}, \boldsymbol{w}\right\rangle_{\partial K} & =(f, \boldsymbol{w})_{K}
\end{aligned}
$$

for all $(\boldsymbol{v}, \boldsymbol{w})$ and for all $K \in \mathcal{T}_{h}$. Summing over all elements K yields

$$
\begin{aligned}
\left(\boldsymbol{q}_{h}, \boldsymbol{v}\right)_{\mathcal{T}_{h}}+ & \left(u_{h}, \nabla \cdot \boldsymbol{v}\right)_{\mathcal{T}_{h}}-\left\langle\hat{u}_{h}, \boldsymbol{v} \cdot \boldsymbol{n}\right\rangle_{\partial \mathcal{T}_{h}}
\end{aligned}=0
$$

for all $(\boldsymbol{v}, \boldsymbol{w}) \in \boldsymbol{V}_{h}^{p} \times W_{h}^{p}$.

Discontinuous Galerkin for elliptic problems

The weak formulation
Find $\left(\boldsymbol{q}_{h}, u_{h}\right)$ such that

$$
\begin{aligned}
\left(\boldsymbol{q}_{h}, \boldsymbol{v}\right)_{K}+ & \left(u_{h}, \nabla \cdot \boldsymbol{v}\right)_{K}-\left\langle\hat{u}_{h}, \boldsymbol{v} \cdot \boldsymbol{n}\right\rangle_{\partial K}
\end{aligned}=0 \quad \begin{aligned}
\left(\boldsymbol{q}_{h}, \nabla w\right)_{K}-\left\langle\hat{\boldsymbol{q}}_{h} \cdot \boldsymbol{n}, \boldsymbol{w}\right\rangle_{\partial K} & =(f, \boldsymbol{w})_{K}
\end{aligned}
$$

for all ($\boldsymbol{V}, \boldsymbol{w})$ and for all $K \in \mathcal{T}_{h}$. Summing over all elements K yields

$$
\begin{aligned}
\left(\boldsymbol{q}_{h}, \boldsymbol{v}\right)_{\mathcal{T}_{h}}+ & \left(u_{h}, \nabla \cdot \boldsymbol{v}\right)_{\mathcal{T}_{h}}-\left\langle\hat{u}_{h}, \boldsymbol{V} \cdot \boldsymbol{n}\right\rangle_{\partial \mathcal{T}_{h}}
\end{aligned}=0, \begin{aligned}
& \left(\boldsymbol{q}_{h}, \nabla \boldsymbol{w}\right)_{\mathcal{T}_{h}}-\left\langle\hat{\boldsymbol{q}}_{h} \cdot \boldsymbol{n}, \boldsymbol{w}\right\rangle_{\partial \mathcal{T}_{h}}=(f, \boldsymbol{w})_{\mathcal{T}_{h}}
\end{aligned}
$$

for all $(\boldsymbol{v}, \boldsymbol{w}) \in \boldsymbol{V}_{h}^{p} \times W_{h}^{p}$.

It remains to determine what $\left(\hat{\boldsymbol{q}}_{h}, \hat{u}_{h}\right)$ should be

Discontinuous Galerkin for elliptic problems

The local discontinuous Galerkin method
It can be shown that a good choice for the numerical flux is to "upwind" \boldsymbol{q} and u in opposite directions:

$$
\begin{aligned}
\hat{\boldsymbol{q}}_{h} & =\left\{\boldsymbol{q}_{h}\right\}-c_{11}\left[u_{h} \boldsymbol{n}\right]+\boldsymbol{c}_{12}\left[\boldsymbol{q}_{n} \cdot \boldsymbol{n}\right] \\
\hat{u}_{h} & =\left\{u_{h}\right\}-\boldsymbol{c}_{12} \cdot\left[u_{h} \boldsymbol{n}\right]-c_{22}\left[\boldsymbol{q}_{h} \cdot \boldsymbol{n}\right]
\end{aligned}
$$

on internal faces and

$$
\begin{aligned}
& \hat{\boldsymbol{q}}_{h}=\boldsymbol{q}_{h}-c_{11} u_{n} \boldsymbol{n} \\
& \hat{u}_{h}=0
\end{aligned}
$$

on boundary faces, where $c_{11}, c_{22} \geqslant 0$. Here $\{v\}=\left(v^{+}+v^{-}\right) / 2$ and $[v \boldsymbol{n}]=\boldsymbol{v}^{+} \boldsymbol{n}^{+}+\boldsymbol{v}^{-} \boldsymbol{n}^{-}$. The local discontinuous Galerkin method chooses

$$
c_{11}=\mathcal{O}(1 / h), \quad \boldsymbol{c}_{12}=\boldsymbol{n} / 2, \quad c_{22}=0 .
$$

Discontinuous Galerkin for elliptic problems

The local discontinuous Galerkin method
With this choice, we can write the Poisson system as

$$
\begin{aligned}
a\left(\boldsymbol{q}_{h}, \boldsymbol{v}\right)+b\left(u_{h}, \boldsymbol{v}\right) & =0 \\
-b^{T}\left(\boldsymbol{q}_{\boldsymbol{h}}, w\right)+c\left(u_{h}, w\right) & =\ell(w)
\end{aligned}
$$

where

$$
\begin{aligned}
a(\boldsymbol{q}, \boldsymbol{v}) & =(\boldsymbol{q}, \boldsymbol{v})_{\mathcal{T}_{h}} \\
b(u, \boldsymbol{v}) & =(u, \nabla \cdot \boldsymbol{v})_{\mathcal{T}_{h}}-\left\langle\left\{u_{h}\right\}-\boldsymbol{c}_{12} \cdot\left[u_{h} \boldsymbol{n}\right],[\boldsymbol{v} \cdot \boldsymbol{n}]\right\rangle_{\mathcal{E}_{h}} \\
b^{T}(\boldsymbol{q}, w) & =-\left(\boldsymbol{q}_{h}, \nabla w\right)_{\mathcal{E}_{h}}+\left\langle\left\{\boldsymbol{q}_{h}\right\}+\boldsymbol{c}_{12}\left[\boldsymbol{q}_{h} \cdot \boldsymbol{n}\right],[w \boldsymbol{n}]\right\rangle_{\mathcal{E}_{h}} \\
c(u, w) & =\left(c_{11}[u \boldsymbol{n}],[w \boldsymbol{n}]\right)_{\mathcal{E}_{h}} \\
\ell(\boldsymbol{w}) & =(f, w)_{\mathcal{T}_{h}}
\end{aligned}
$$

Discontinuous Galerkin for elliptic problems

The local discontinuous Galerkin method
Or in matrix form as

$$
\left[\begin{array}{cc}
A & B \\
-B^{T} & C
\end{array}\right]\left[\begin{array}{l}
Q \\
U
\end{array}\right]=\left[\begin{array}{l}
0 \\
L
\end{array}\right]
$$

The LDG choice makes A block-diagonal, and thus easy to invert. We can therefore eliminate Q by taking a Schur complement to obtain the reduced system

$$
K U=L
$$

where $K=C+B^{T} A^{-1} B$.

Discontinuous Galerkin for elliptic problems

The local discontinuous Galerkin method
Or in matrix form as

$$
\left[\begin{array}{cc}
A & B \\
-B^{T} & C
\end{array}\right]\left[\begin{array}{l}
Q \\
U
\end{array}\right]=\left[\begin{array}{l}
0 \\
L
\end{array}\right]
$$

The LDG choice makes A block-diagonal, and thus easy to invert. We can therefore eliminate Q by taking a Schur complement to obtain the reduced system

$$
K U=L
$$

where $K=C+B^{T} A^{-1} B$.

Upcoming work: Can multigrid be effectively applied to solve this system?

Discontinuous Galerkin for elliptic problems

The local discontinuous Galerkin method
Or in matrix form as

$$
\left[\begin{array}{cc}
A & B \\
-B^{T} & C
\end{array}\right]\left[\begin{array}{l}
Q \\
U
\end{array}\right]=\left[\begin{array}{l}
0 \\
L
\end{array}\right]
$$

The LDG choice makes A block-diagonal, and thus easy to invert. We can therefore eliminate Q by taking a Schur complement to obtain the reduced system

$$
K U=L
$$

where $K=C+B^{T} A^{-1} B$.

Upcoming work: Can multigrid be effectively applied to solve this system? Idea: Coarsen Q and U systems separately

Goals and future work (aka my PhD)

- Create an optimal complexity spectral element method

Goals and future work (aka my PhD)

- Create an optimal complexity spectral element method
- Integrate Eulerian fluid-structure interaction into the implicit mesh DG framework, in 2D and 3D

Goals and future work (aka my PhD)

- Create an optimal complexity spectral element method
- Integrate Eulerian fluid-structure interaction into the implicit mesh DG framework, in 2D and 3D
- Develop an effective way to apply multigrid to DG

Thank you

Thanks for listening!

Thanks to: Chris Rycroft, Alex Townsend, Robert Saye, Jaime Peraire, Sheehan Olver, Heather Wilber, \& Haixiang Liu.

Thomas algorithm

$$
\left[\begin{array}{ccccc}
b_{1} & c_{1} & & & \\
a_{2} & b_{2} & c_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & a_{n-1} & b_{n-1} & c_{n-1} \\
& & & a_{n} & b_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n-1} \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{n-1} \\
d_{n}
\end{array}\right]
$$

First compute

$$
c_{i}^{\prime}=\left\{\begin{array}{ll}
\frac{c_{i}}{b_{i}} & i=1 \\
\frac{c_{i}}{b_{i}-a_{i} i_{i-1}^{\prime}} & i=2, \ldots, n-1
\end{array} \quad d_{i}^{\prime}= \begin{cases}\frac{d_{i}}{b_{i}} & i=1 \\
\frac{d_{i}-a_{i} d_{i-1}^{\prime}}{b_{i}-a_{i} c_{i-1}} & i=2, \ldots, n\end{cases}\right.
$$

Then compute x by backsubstitution:

$$
\begin{aligned}
x_{n} & =d_{n}^{\prime} \\
x_{i} & =d_{i}^{\prime}-c_{i}^{\prime} x_{i+1}, \quad i=n-1, \ldots, 1 .
\end{aligned}
$$

