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Abstract

This thesis develops numerical methods for the solution of elliptic partial differential

equations (PDEs), all focused on delivering high-order accuracy with low computa-

tional complexity. Three algorithms for solving elliptic PDEs are presented: a fast

direct solver for a global spectral method on simple two- and three-dimensional

domains; a fast direct solver for a spectral element method in two dimensions; and a

multigrid solver for a discontinuous Galerkin method in two and three dimensions.

In Chapter 2, an optimal complexity, spectrally-accurate method is presented for the

solution of Poisson’s equation on a square, solid cylinder, solid sphere, and cube. The

method employs a carefully chosen spectral basis to discretize Poisson’s equation as a

Sylvester equation with pentadiagonal matrices, which is solved using the alternating

direction implicit (ADI) method. A separated spectra property in our discretizations

is exploited to allow the ADI method to be used as a direct solver.

In Chapter 3, we introduce a sparse spectral element method in two dimensions

based on the ultraspherical spectral method, and a corresponding fast direct solver

based on the hierarchical Poincaré–Steklov scheme for solving second-order linear

PDEs onpolygonal domainswithunstructuredquadrilateral or triangularmeshes. The

spectral element method achieves an overall computational complexity of O(p4/h3)
for mesh size h and polynomial order p in 2D, enabling hp-adaptivity to be efficiently

performed. We develop an open-source software system, ultraSEM, for flexible,

user-friendly spectral element computations in MATLAB.

In Chapter 4, an efficient hp-multigrid scheme is presented for local discontinuous

Galerkin (LDG) discretizations of elliptic problems, formulated around the idea of

separately coarsening the underlying discrete gradient and divergence operators. We

show that traditional multigrid coarsening of the primal formulation leads to poor and

suboptimal multigrid performance, whereas coarsening of the flux formulation leads

to essentially optimal convergence and is equivalent to a purely geometric multigrid

method. We show that good multigrid convergence rates are achieved in a variety of

numerical tests on 2D and 3D uniform and adaptive Cartesian grids, as well as for

curved domains using implicitly defined meshes and for multi-phase elliptic interface

problems with complex geometry.

iii



Contents

Abstract iii

Contents iv

Acknowledgments viii

1 Introduction 1
1.1 Elliptic PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 High-order methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Global spectral methods . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Spectral element methods . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Discontinuous Galerkin methods . . . . . . . . . . . . . . . . . . 7

1.3 Scientific software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Fast Poisson solvers for spectral methods 10
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 The alternating direction implicit method . . . . . . . . . . . . . . . . . 13

2.2.1 ADI as a direct solver . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 An ADI-based fast Poisson solver for finite difference methods . 17

2.3 A fast spectral Poisson solver on the square . . . . . . . . . . . . . . . . 19

2.3.1 An ultraspherical polynomial basis . . . . . . . . . . . . . . . . . 19

2.3.2 A spectral discretization of Poisson’s equation . . . . . . . . . . 20

2.3.3 Verifying that P1, P2, and P3 hold . . . . . . . . . . . . . . . . . 21

2.3.4 Computing the ultraspherical coefficients of a function . . . . . 23

2.3.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Fast spectral Poisson solvers on cylindrical and spherical geometries . . 24

2.4.1 A fast spectral Poisson solver on the cylinder . . . . . . . . . . . 24

2.4.1.1 The double Fourier sphere method for the cylinder . . 25

2.4.1.2 Imposing partial regularity on the solution . . . . . . . 26

2.4.1.3 A solution method for each Fourier mode . . . . . . . . 27

2.4.2 A fast spectral Poisson solver on the solid sphere . . . . . . . . . 29

2.5 A fast spectral Poisson solver on the cube . . . . . . . . . . . . . . . . . 31

2.6 Nontrivial boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.1 Nonhomogeneous Dirichlet conditions . . . . . . . . . . . . . . 33

2.6.2 Neumann and Robin . . . . . . . . . . . . . . . . . . . . . . . . . 33

iv



CONTENTS

3 The ultraspherical spectral element method 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Background material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 The ultraspherical spectral method . . . . . . . . . . . . . . . . . 37

3.2.2 Spectral methods on quadrilaterals and triangles . . . . . . . . . 40

3.3 The ultraspherical spectral element method . . . . . . . . . . . . . . . . 43

3.3.1 Domain decomposition for modal discretizations . . . . . . . . 44

3.3.2 Model problem: two “glued” squares . . . . . . . . . . . . . . . 45

3.3.2.1 Constructing local operators . . . . . . . . . . . . . . . 46

3.3.2.2 Merging two operators . . . . . . . . . . . . . . . . . . 49

3.3.2.3 Computing the solution . . . . . . . . . . . . . . . . . . 51

3.3.3 The hierarchical scheme . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.3.1 Initialization stage . . . . . . . . . . . . . . . . . . . . . 51

3.3.3.2 Build stage . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.3.3 Solve stage . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.4 Computational complexity . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.1 Computational complexity . . . . . . . . . . . . . . . . . . . . . . 57

3.5.2 Convergence and hp-adaptivity . . . . . . . . . . . . . . . . . . . 58

3.5.3 Implicit time-stepping for parabolic problems . . . . . . . . . . . 62

4 Efficient operator-coarsening multigrid schemes for local discontinuous
Galerkin methods 64
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Discontinuous Galerkin formulation . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Model problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.2 DG for elliptic problems . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.3 The local discontinuous Galerkin method . . . . . . . . . . . . . 68

4.2.3.1 Primal formulation . . . . . . . . . . . . . . . . . . . . . 71

4.2.3.2 Flux formulation . . . . . . . . . . . . . . . . . . . . . . 71

4.2.3.3 Remarks on the choice of basis . . . . . . . . . . . . . . 72

4.3 Multigrid methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Mesh hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.2 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.3 Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.4 Operator coarsening and pure geometric multigrid . . . . . . . 76

4.3.4.1 Primal coarsening . . . . . . . . . . . . . . . . . . . . . 76

4.3.4.2 Flux coarsening . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.4.3 Benefits of operator coarsening . . . . . . . . . . . . . . 79

4.3.4.4 Relation to other DG methods . . . . . . . . . . . . . . 80

4.3.5 Multigrid preconditioned conjugate gradient . . . . . . . . . . . 81

v



CONTENTS

4.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.1 Uniform Cartesian grids . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.2 On the effect of penalty parameters on multigrid performance . 83

4.4.3 Adaptive mesh refinement . . . . . . . . . . . . . . . . . . . . . . 85

4.4.4 Implicitly defined meshes and elliptic interface problems . . . . 86

5 Conclusion and future directions 91

Appendix A MATLAB code to compute ADI shifts 95

Appendix B Bounding eigenvalues 96

Appendix C Constructing an interpolant of Dirichlet data 98

Appendix D Tables of multigrid convergence factors 99

References 104

vi



To Mom & Dad

vii



Acknowledgments

First, I must thank my advisors, Chris Rycroft and Alex Townsend. Chris, thank you

for bringing such happiness to everything mathematical. My days were always made

better by a piece of British humor, a Mac rumor, or the sight of a colored tee. Your

dedication to the growth of numerics at Harvard is noble—thank you for making

a space for computational research at SEAS. I am grateful for our summer trips to

Berkeley and for your mentorship throughout my graduate career. Alex, getting

to work with you has been an honor that wholly transformed my graduate school

experience. Your unrelenting optimism and excitement for applied mathematics are

inspiring, and your creativity contagious. I am grateful to have had a front-row seat. I

look back fondly on our conference trips together as well as my trips to Cornell. Your

guidance has truly been a gift and I am lucky to call you a mentor and a trusted friend.

My family has been a pillar of support for me during my time in graduate school.

To my mom and dad, Marie and Frank: thank you for always being there for me.

Your love has helped me through the toughest times and is an unfathomable source

of happiness in my life. To my sister, Marisa, and brother-in-law, Kevin: thanks for

the fun memories and for your thoughtful advice. To Ellen: thank you for your

unwavering support and infinite kindness.

My friends have been a constant source of encouragement throughout the last five

years. To my bandmates in the American Symphony of Soul: Alek, Alex, Andrew,

Erich, Kristen, Jackson, Chris, Willie, Mary—getting to play music with you all is a joy

and has kept me sane throughout graduate school. I’m lucky to have you as friends.

To Jordan and Shruti: thank you for your innumerable sledges, pranks, and late-night

hangs. I’ll fondly miss our trivia team. To Jon, Carlos, Mark, Nico, Doug, Mike, and

Ben: thank you for your lifelong friendships.

I am fortunate to have had many wonderful colleagues and mentors throughout

my time in graduate school. Robert Saye has been an endless source of knowledge

on high-order methods and high-performance C++, and has been a wonderful

collaborator. I’m lucky to have experienced Nick Hale’s MATLAB wizardry and

deep expertise in spectral methods firsthand, and working with him has been a

pleasure. Nick Trefethen’s enthusiasm for numerical analysis and its communication

has been infectious and inspires me daily. I’ve greatly benefitted from friendships and

conversations with countless others, including Sheehan Olver, Alex Barnett, Rasmus

Tamstorf, Keaton Burns, Heather Wilber, Marc Gilles, Andrew Horning, Ben Zhang,

Ricardo Baptista, Thomas Fai, Chen-Hung Wu, Eder Medina, Nick Derr, and Luna

Lin.

Finally, to my thesis committee—Chris, Alex, Robert, and Efthimios Kaxiras—thank

you for taking time to read this thesis and for your detailed feedback.

viii

https://americansymphonyofsoul.com/


ACKNOWLEDGMENTS

My research has been generously funded by the Department of Defense through

the National Defense Science & Engineering Fellowship and by National Science

Foundation grants 1645445 and 1818757. This research was also supported in part by

the Applied Mathematics Program of the U.S. Department of Energy Office of Ad-

vanced Scientific Computing Research under contract number DE-AC02-05CH11231.

Some computations used resources of the National Energy Research Scientific Com-

puting Center, a Department of Energy Office of Science User Facility supported

by the Office of Science of the U.S. Department of Energy under contract number

DE-AC02-05CH11231.

ix



Chapter 1

Introduction

Physical simulation is an important part of modern science. In addition to theory and

experiment, it has emerged as a third pillar for scientific inquiry. The ability to run

experiments, test hypotheses, and validate data on a computer has quickened the

pace of discovery and prototyping in academia and industry over the last half-century,

and today computation plays a fundamental role in nearly all areas of science and

engineering.

Underpinning the computation revolution is the application of mathematical ideas

to the development of numerical algorithms. In tandem with the decades-long

advancement in computing power due to Moore’s law [120], strides in numerical

analysis—realized as efficient and accurate algorithms to solve the problems of

continuous mathematics—have enabled computational science to flourish [145]. The

focus of this thesis is on the development of efficient algorithms for the high-order

accurate numerical solution of elliptic partial differential equations (PDEs).

1.1 Elliptic PDEs

Elliptic PDEs arise as components in the physical models and solution methods for a

variety of problems, and commonly appear in the following contexts:

• Physical models. Elliptic PDEs describe the steady-state, equilibrium behavior

ofmany physical phenomena, such as gravitation, electrostatics, and elastostatics.

Poisson’s equation is the prototypical elliptic PDE,

∇2φ = f ,

and arises in a wide variety of physical contexts. Interpreting φ as the density

of some quantity (e.g., chemical concentration in space), Poisson’s equation

describes the distribution of φ in equilibrium when subject to external forcing

f [62]. If ρ is an electric charge density, then the electric potential φ due to ρ

satisfies the Poisson equation

∇2φ = − ρ

ε0
,

1



CHAPTER 1. INTRODUCTION

where ε0 is the permittivity of free space. If ρ is a mass density, then the

gravitational potential φ due to ρ satisfies the Poisson equation

∇2φ = 4πGρ,

where G is the gravitational constant.

• Projection methods. Consider the incompressible Navier–Stokes equations,

ρ

(
∂u
∂t

+ u · ∇u
)
= −∇p + µ∇2u, (1.1.1)

∇ · u = 0, (1.1.2)

which describe the motion of an incompressible viscous fluid with velocity u,
pressure p, constant density ρ, and constant viscosity µ. To solve these equations

numerically, projection methods [45, 46] are often used, which enforce the fluid

velocity u to be divergence-free at each time step of a simulation. Let uk
and pk

denote the velocity and pressure, respectively, at time step k of a simulation with

step size ∆t. Projection methods compute an intermediate velocity u∗ through
an update rule which fixes the pressure term in (1.1.1) (e.g., by extrapolating a

guess for p from the previous time step or by setting p = 0, as below),

ρ

(
u∗ − uk

∆t
+ uk · ∇uk

)
= µ∇2u∗,

followed by an implicit update rule for uk+1
which ignores everything but the

pressure term,

ρ

(
uk+1 − u∗

∆t

)
= −∇pk+1. (1.1.3)

However, the pressure pk+1
is not known and must be computed so that the

resulting velocity field uk+1
is incompressible. Taking the divergence of (1.1.3)

and enforcing the incompressibility condition (1.1.2) yields the pressure Poisson

equation for the unknown pressure pk+1
,

∇2pk+1 =
ρ

∆t
∇ · u∗. (1.1.4)

This elliptic PDE is the key step to enforcing incompressibility in any projection

method and must be solved at each time step. An elliptic PDE solver is often the

computational bottleneck in large-scale incompressible fluid simulations due to

its role in both projection and viscous solves [107].

2



CHAPTER 1. INTRODUCTION

• Implicit time-stepping schemes. Consider a time-dependent parabolic PDE

such as the heat equation,

∂u
∂t

= κ∇2u, (1.1.5)

which describes how temperature u diffuses in a domain with diffusivity κ.

Implicit time-stepping schemes are often used for equations where diffusion

processes dominate, as their stability permits large time steps to be taken beyond

the Courant–Friedrichs–Lewy limit of ∆t . h2
in explicit schemes [53], which

can be restrictive when the mesh size h is very small. The implicit Euler scheme

applied to (1.1.5) yields a semi-discrete equation for the unknown temperature,

uk+1
, at time step k + 1,

uk+1 − ∆tκ∇2uk+1 = uk.

This is an elliptic PDE which must be solved once per time step to obtain the

unknown temperature at the next point in time. In equations where diffusion

is not the dominant physical process (e.g., where diffusion competes with

convection and reaction processes), implicit-explicit (IMEX) time integration

schemes can be used to alleviate the severe time step restrictions imposed by

competing length scales [12, 147], and an elliptic PDE may need to be solved at

each implicit step of an IMEX scheme.

The development of fast solvers for elliptic PDEs is a beautiful subfield of numerical

analysis and has a rich history, from the fast Fourier transform (FFT) and fast diago-

nalization techniques (1965) [52], to cyclic reduction (1970) [41], to multigrid methods

(1977) [33], to hierarchical low-rank approximation and the fast multipole method

(1987) [86]. The application of fast methods to high-order accurate discretizations of

PDEs is an area of active research, and forms the motivation for much of this thesis.

1.2 High-order methods

Algorithms for the solution of elliptic PDEs have been developed based on a broad

range of mathematical ideas. In general, a PDE is discretized by approximating

functions and differential operators according to some parameter, e.g., a grid spacing

or mesh size h, a polynomial order p, or a quadrature size N. Error between the

computed solution and true solution, ε, is decreased by changing this parameter, e.g.,

by using a finer grid (h→ 0), a higher degree polynomial (p→ ∞), ormore quadrature

points (N → ∞). Classical discretization techniques, such as finite difference methods

or finite volume methods, typically control this error to a low order of accuracy. For

a kth order finite difference scheme, the error ε decreases algebraically as O(hk),
and low-order schemes often use 1 ≤ k ≤ 4. When k = 2, for instance, halving the

parameter h by using twice as many grid points in each dimension causes the error to

3



CHAPTER 1. INTRODUCTION

decrease by a factor of four. Obtaining multiple digits of accuracy may require many

successive refinements of h, each requiring more computation time than the last.

While low-ordermethods have foundwidespread success inmany fields, high-order

methods—typified by their high rate of convergence to the solution—offer an attractive

alternative. For a given computational cost, high-ordermethods can produce results to

a higher accuracy than traditional low-order techniques can. In large-scale simulations

where spatial resolution is already as refined as modern computers allow (e.g., in

simulations of the Earth’s mantle [146] or aerospace simulations [31]), high-order

accurate algorithms may allow for increased resolution of turbulent fluid flows or

high-frequency wave scattering at the same computational cost. On high-performance

computers where simulations are increasingly memory-bound, simulation time can

depend largely on the amount of communication per degree of freedom. High-order

methods efficiently utilize this communication bandwidth by inherently providing

more computation per degree of freedom (e.g., by interpolating data from many

neighboring grid points at once), making them well suited to data parallelism and

well poised to leverage high-bandwidth hardware such as graphics processing units

(GPUs) [157].

We nowbriefly describe three high-order accurate discretization techniques, ordered

by the smoothness of the approximations they construct, from most smooth to least

smooth. Each of the main chapters in this thesis focuses on deriving fast solvers for

elliptic PDEs based on one of these methods.

1.2.1 Global spectral methods

On simple geometries, the solution to a PDE may be approximated as a linear

combination of basis functions defined over the entirety of the geometry. Such a

representation—known as a global spectral method—is global in the sense that the

smoothness of the resulting approximation is only limited by the smoothness of the

continuous solution. Approximations based on global spectral methods can converge

rapidly when the solution is smooth [169], assuming a stable spectral method is

used [168]. For example, the error in the degree-p Fourier series approximation to a

C∞
periodic function on [−1, 1] decreases as O(p−m) for every m; if the function is

analytic in a complex strip about the real axis, then convergence at a rate ofO(C−p) for
C > 1 is achieved [168]. In practice, one may approximate functions via coefficients

in a series expansion or via values through interpolation on a grid (i.e., spectral

collocation). Differential operators may be represented by their action on these

coefficients or values, allowing linear differential equations to be discretized into

linear systems of equations.

The choice of basis affects important properties of the resulting linear systems. In a

spectral collocation method, differentiation maps function values on a grid to values

of the derivative of the unique global interpolant over that same grid. That is, given a

set of p + 1 nodes {xk}
p
k=0 and values {u(xk)}

p
k=0 of a function u, the derivative u′(x)

4



CHAPTER 1. INTRODUCTION

is approximated at {xk} through differentiation of the unique interpolant, I{u(xj)}(x),
i.e.,

u′(xk) ≈ (I{u(xj)})
′(xk), k = 0, . . . , p.

As the derivative of u at the kth point depends on the values of u at all points,

differentiation is discretized as a dense matrix, and spectral collocation leads to dense

discretizations of differential equations.

In stark contrast, the classical Fourier spectral method—which represents periodic

functions through coefficients in a Fourier series expansion—exploits the fact that

differentiation can be represented in the Fourier basis as a diagonal scaling. If we

approximate a function u, periodic on [−π, π] and continuouswith bounded variation,

by the degree-p Fourier series

u(x) ≈
p/2

∑
k=−p/2

akeikx, x ∈ [−π, π],

whose coefficients {ak} can be computed via the fast Fourier transform [52], then the

derivative of u can be naturally approximated in the same form, i.e.,

u′(x) ≈
p/2

∑
k=−p/2

(ikak)eikx, x ∈ [−π, π].

This fact allows the Fourier spectral method to discretize differential equations

with periodic boundary conditions into sparse linear systems. In the non-periodic

setting, a function u, continuous with bounded variation on [−1, 1], may be naturally

represented by the degree-p Chebyshev series

u(x) ≈
p

∑
k=0

akTk(x), x ∈ [−1, 1],

with Chebyshev coefficients {ak}, where Tk(x) = cos(k cos−1 x) is the degree-k
Chebyshev polynomial of the first kind. However, differentiation is an upper-

triangular operation here, as the representation of T′k(x) in the Chebyshev basis is a

global one, i.e.,

T′k(x) =

{
2k ∑k−1

j odd Tj(x), k even

2k ∑k−1
j even Tj(x)− 1, k odd

Approaches for non-periodic problems based on differentiation in the Chebyshev

basis—notably, the Chebyshev tau method [83, 102, 128, 130, 131]—thus lead to dense

linear systems of equations. However, recent advances in non-periodic spectral

methods allow differential equations to be discretized into sparse linear systems by

carefully changing polynomial bases when differentiation is performed [125–127,163].

5



CHAPTER 1. INTRODUCTION

Such sparse discretizations have renewed interest in the development of fast solvers

for spectral methods, and play a central role in Chapters 2 and 3 of this thesis.

These ideas extend beyond one dimension. Multivariate polynomials that are

orthogonal on a variety of simple domains may be constructed directly [60] (e.g.,

Zernike polynomials on the disk [181], spherical harmonics on the sphere [13],

Koornwinder polynomials on the triangle [100]) or through tensor products of

one-dimensional bases [32, 164, 167, 168, 176, 177], and global spectral methods for

the solution of PDEs may be developed analogously. Chapter 2 develops optimal

complexity solvers for Poisson’s equation based on global spectral methods in two

and three dimensions.

1.2.2 Spectral element methods

Spectral element methods (SEMs) [134] extend the approximation power of global

spectral methods to domainswithmeshed geometries. In an SEM, a domain is meshed

into a union of elements (e.g., triangles or quadrilaterals in two dimensions) and a

piecewise polynomial basis on each element is used to approximate functions locally.

A global representation of the solution is obtained through the union of the spectral

representations local to each element, which are typically enforced to be continuous

or continuously differentiable across element interfaces. Convergence is achieved by

either refining the mesh (h-refinement) or increasing the polynomial degree on the

elements (p-refinement). In theory, super-algebraic convergence can be observed—

even for solutions with singularities—by optimally selecting a refinement strategy

(hp-adaptivity) [18]. However, hp-adaptivity theory can require high polynomial

degrees which are rarely used in practice, as traditional collocation-based methods

can have prohibitive computational costs and numerical stability issues in this regime.

In particular, constructing efficient solvers for traditional high-order nodal element

methods can be challenging. Direct solvers can become computationally intractable

even for relatively small polynomial degrees as nodal discretizations result in dense

linear algebra; in d dimensions, the computational complexity for a direct solver

naïvely scales as O(p3d). Iterative solvers may require an increasing number of

iterations as p increases because of the difficulties in designing robust preconditioners

in the high p regime [129]. Because of these challenges, traditional element methods

are typically restricted to low polynomial degrees, and h-refinement is generically

preferred over p-refinement irrespective of local error estimators [171]. Even when

hp-adaptivity theory—based on the regularity of the PDE solution—indicates that

high p should be used, this advice is often ignored due to the computational cost of

the high-p regime.

In Chapter 3, we present an SEM based on a sparse global spectral method with

a direct solver that scales as O(p4) when a degree p× p discretization is used on

each element in 2D. The method is competitive for very high polynomial degrees

(e.g., p ≤ 100), allowing for extensive p-refinement to be performed in regions
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where the solution is smooth, and is packaged into a software library, ultraSEM,

suitable for flexible spectral element computations. The sparse discretizations used

by ultraSEM enable users to compute with higher p than current SEM libraries (such

as Nektar++ [42,121], Nek5000 [9], MFEM [3], and Firedrake [142]) allow.

1.2.3 Discontinuous Galerkin methods

An approximation to the solution need not be continuous over the entire geometry.

By replacing continuity conditions between elements with suitable jump or flux

conditions, one obtains the discontinuous Galerkin (DG) method [143], in which

the continuous solution is approximated by a piecewise continuous function with

(possible) discontinuities between elements.

DG methods have gained broad popularity in recent years. Similar in spirit to

finite volume methods that track fluxes on a grid, DG methods can be constructed to

conserve mass at the discrete level [91]. They are well-suited to hp-adaptivity, provide
high-order accuracy, and can be applied to a wide range of problems on complex

geometries with unstructured meshes. Although DG methods were first applied to

the discretization of hyperbolic conservation laws, they have been extended to handle

elliptic problems and diffusive operators [11]. Such methods include the symmetric

interior penalty (SIP) method [10,57], the Bassi–Rebay (BR1, BR2) methods [25,26],

the local discontinuous Galerkin (LDG) method [51], the compact discontinuous

Galerkin (CDG) method [137], the line-based discontinuous Galerkin method [138],

and the hybridizable discontinuous Galerkin (HDG) method [48]. In particular, the

development of efficient solvers for DG discretizations of elliptic problems is an active

area of research. The multigrid method has emerged as a natural candidate due

to its success in the continuous finite element and finite difference communities,

both as a standalone solver and as a preconditioner for the conjugate gradient (PCG)

method. However, the direct application of black-box multigrid techniques to DG

discretizations can result in suboptimal performance [5, 82].

In Chapter 4, we present an efficient hp-multigrid scheme for a DG discretization of

elliptic problems, formulated around the idea of separately coarsening the underlying

discrete gradient and divergence operators. We show that traditional multigrid

coarsening of the primal DG formulation leads to poor and suboptimal multigrid

performance, whereas coarsening of the flux DG formulation leads to essentially

optimal convergence and is equivalent to a purely geometric multigrid method. The

resulting operator-coarsening schemes do not require the entire mesh hierarchy to

be explicitly built, thereby obviating the need to compute quadrature rules, lifting

operators, and other mesh-related quantities on coarse meshes.
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1.3 Scientific software

The development of user-friendly scientific software is an important way to facilitate

the adoption of new algorithms by computational scientists. Independent of the

mathematical algorithms implemented, scientific software libraries that are well

maintained, well documented, easy to install, and easy to use are more likely to

find success in the scientific community [105]. Software for the solution of elliptic

PDEs is no exception, and many open-source scientific software libraries have found

widespread success due to their efficient algorithms and user-friendly interfaces for

solving elliptic PDEs. Available software libraries for solving elliptic PDEs with

high-order methods include:

• Chebfun [58]: AMATLAB toolbox for spectralmethods. It includes an automated

PDE solver for a spectral method on the rectangle, as well as Helmholtz solvers

on the disk, sphere, and ball.

• Dedalus [40]: A Python framework for solving PDEs using spectral methods

on semi-periodic domains. It supports MPI-based parallelism, with a focus on

computational fluid dynamics applications.

• ApproxFun [124]: A Julia package for spectral methods, including a sparse

method for solving PDEs on simple domains.

• MFEM [3]: A C++ library that implements a wide variety of high-order FEM

discretizations. It supports MPI-based parallelism and can interface with a

range of solvers.

• Nektar++ [42, 121]: A C++ library for spectral element computation and hp-
adaptivity using both nodal and modal bases.

• Nek5000 [9]: A Fortran library for computational fluid dynamics using the

spectral element method.

• deal.II [22]: A C++ library for general finite element computation with a wide

variety of high-order FEM discretizations. It supports MPI-based parallelism

and can interface with a range of solvers.

• Firedrake [142]: A Python library for the automated solution of PDEs using a

variety of finite element discretizations.

• PETSc [20, 21]: A general toolbox that implements a range of scalable solvers,

linear algebra routines, preconditioners, and iterative methods.

• hypre [64]: A C library of high-performance preconditioners and solvers for the

solution of large, sparse linear systems of equations, with a focus on parallel

algebraic multigrid methods.

8
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In that vein, source code for much of the work presented in this thesis is publicly

available on GitHub. Moreover, the algorithms described in Chapter 3 have been

packaged into a software library that aims to be well-documented and easy to use.

The following repositories contain code corresponding to each chapter:

• Chapter 2: https://github.com/danfortunato/fast-poisson-solvers

• Chapter 3: https://github.com/danfortunato/ultraSEM

• Chapter 4: https://github.com/danfortunato/multigrid-ldg
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Chapter 2

Fast Poisson solvers for spectral methods†

2.1 Introduction

Consider Poisson’s equation on a square with homogeneous Dirichlet conditions:

uxx + uyy = f , (x, y) ∈ [−1, 1]2, u(±1, ·) = u(·,±1) = 0, (2.1.1)

where f is a known continuous function and u is the desired solution. When (2.1.1)

is discretized by the finite difference (FD) method with a five-point stencil on an

(n + 1)× (n + 1) equispaced grid, there is a FFT-based algorithm that computes the

values of the solution in an optimal
1 O(n2 log n) operations [90]. Many fast Poisson

solvers have been developed for low-order approximation schemes using uniform

and nonuniform discretizations based on cyclic reduction [41], the fast multipole

method [116], and multigrid [76]. This work began with a question:

Is there an optimal complexity spectral method for (2.1.1)?

We find that the answer is yes. In section 2.3, we describe a practical O(n2(log n)2)
algorithm based on the alternating direction implicit (ADI) method [136]. We go on to

derive optimal complexity spectral methods for Poisson’s equation with homogeneous

Dirichlet conditions for the cylinder and solid sphere in section 2.4 and for the cube

in section 2.5. In section 2.6, we extend our approach to Poisson’s equation with

Neumann and Robin boundary conditions. Optimal complexity spectral methods

already exist for Poisson’s equation on the disk [176,177] and surface of the sphere [167].

This chapter can be seen as an extension of that work.

A typical objection to the practical relevance of spectral methods for Poisson’s

equation on domains such as the square and cylinder is that the solution generically

can have weak corner singularities, which necessarily restricts the convergence rate

†
This chapter is a modified version of the following jointly authored publication: D. Fortunato

and A. Townsend, Fast Poisson solvers for spectral methods, IMA J. Numer. Anal., 40 (2020), pp. 1994–2018,

https://doi.org/10.1093/imanum/drz034.

1
True optimal complexity means that the number of operations scales directly with the number

of degrees of freedom, which would be O(n2) here. Throughout this work, “optimal complexity” and

“fast” mean a computational complexity that is optimal up to polylogarithmic factors.
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of classical spectral methods to subexponential convergence (for example, consider

∇2u = −1 with homogeneous Dirichlet boundary conditions [32, (2.39)]). Therefore,

high degree polynomial approximants may be required to globally resolve such

solutions. Since the spectral Poisson solvers we describe have optimal complexity,

high degree approximants can be computed to resolve solutions with weak corner

singularities with a computational cost comparable to low-order methods using the

same number of degrees of freedom. Furthermore, methods have been developed to

deal with corner singularities for spectral methods, such as mapping and singularity

subtraction [32].

The classical finite difference fast Poisson solver provides useful insight into the

development of fast solvers. The FD discretization of (2.1.1) with a five-point stencil

on an (n + 1)× (n + 1) equispaced grid can be written as the following Sylvester

matrix equation:

KX + XKT = F, K = − 1
h2


2 −1

−1 2
. . .

. . . . . . −1
−1 2

 ∈ R(n−1)×(n−1), (2.1.2)

where h = 2/n, Xjk = u(−1 + kh,−1 + jh), and Fjk = f (−1 + kh,−1 + jh) for

1 ≤ j, k ≤ n− 1. Here, the matrix X represents the values of the solution on the

interior nodes of the (n + 1)× (n + 1) equispaced grid. The eigendecomposition of

K is K = SΛS−1
, where S is the normalized discrete sine transformation (of type

I) matrix [104, (2.24)] and Λ = diag(λ1, . . . , λn−1) with λk = −4/h2 sin2(πk/(2n))
for 1 ≤ k ≤ n− 1 [104, (2.23)]. Substituting K = SΛS−1

into KX + XKT = F and

rearranging, we find a simple formula for X:

X = S
(

C ◦ (S−1FS−T)
)

ST, Cjk =
1

λj + λk
, (2.1.3)

where ‘◦’ is theHadamardmatrix product, i.e., (A ◦ B)jk = AjkBjk. Since S = ST = S−1

and matrix-vector products with S can be computed in O(n log n) operations using
the FFT [39], X can be computed via (2.1.3) in a total of O(n2 log n) operations.
Now suppose that K in (2.1.2) is replaced by a diagonalizable matrix A so that

(2.1.1) has a spectral discretization of the form AX + XAT = F. Then, an analogous

formula to (2.1.2) still holds by using the eigendecomposition of A. However, the

corresponding formula to (2.1.3) does not lead to a fast Poisson solver because the

eigenvectors of A are not known in closed form [174], and deriving an optimal

matrix-vector product for the eigenvector matrix of A is an ambitious project in itself.

While FFT-based Poisson solvers exploit structured eigenvectors—which spectral

discretization matrices do not possess—our method exploits the fact that the spectra

of A and −A are separated using the ADI method (see section 2.3).

11
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The ADI method is an iterative method for solving Sylvester equations of the form

AX− XB = F. It is computationally efficient, compared to the O(n3) Bartels–Stewart

algorithm [23], when A and B have certain properties (see, for example, P1, P2,

and P3 in section 2.2). By carefully designing spectral discretizations for Poisson’s

equation on the square (see section 2.3), cylinder (see subsection 2.4.1), solid sphere

(see subsection 2.4.2), and cube (see section 2.5) as Sylvester equations with desired

properties, we are able to derive optimal complexity spectral Poisson solvers.

Spectral methods with ADI-based solvers have been attempted previously. In 1979,

Haidvogel and Zhang derived a Chebyshev-tau spectral method that discretizes (2.1.1)

as a Sylvester equation of the form AX + XAT = F with the matrix A being pentadi-

agonal except for two rows. They then applied the ADI method after precomputing

the LU decomposition of A [87]. However, they advocated against their ADI-based

Poisson solver in favour of an O(n3) algorithm, because their Sylvester equation does

not possess favourable properties for the ADI method and the precomputation costs

O(n3) operations. In section 2.3, we employ a spectral discretization of (2.1.1) that is

specifically designed for the ADI method and requires no precomputation, so that we

have a provable algorithmic complexity of O(n2(log n)2).
Many other fast Poisson solvers have found success with low-order methods, such

as ones based on (i) cyclic reduction, (ii) multigrid, (iii) the fast multipole method,

and (iv) the Fourier method with polynomial subtraction. However, extending

these solvers to spectral methods while maintaining optimal complexity proved

challenging for various reasons: (i) cyclic reduction is not readily applicable because

spectral discretizations of (2.1.1) may not involve matrices with Toeplitz structure; (ii)

multigrid convergence factors for spectral collocation discretizations often degrade

as n increases [76]; (iii) the fast multipole method has a complexity that depends

on the order of accuracy and is suboptimal in the spectral regime [85,116]; and, (iv)

pseudospectral Fourier with polynomial subtraction can be employed to derived an

arbitrary-order Poisson solver [14, 34], but any approach based on uniform grids

cannot be both numerically stable and spectrally accurate [140]. Thus, for the purpose

of developing a fast spectral Poisson solver for (2.1.1), many of the approaches in the

literature do not readily lend themselves.

Despite this observation, we stress that these fast Poisson solvers have advantages

over global spectral methods; in particular, many of the methods are well-suited

to adaptive discretizations, provide broad geometric flexibility beyond the simple

domains considered here, and extend to other variable-coefficient elliptic PDEs.

Though not considered in this work, our ADI-based solver may also extend to other

strongly elliptic PDEs that preserve the necessary separated spectra property, such

as the screened Poisson equation. In particular, it is possible that solving variable-

coefficient PDEs may be possible using non-commutative ADI [175]. Finally, we do

not advocate the use of global spectral methods over low-order or element-based

methods for problems with non-smooth or discontinuous input data.

This chapter is structured as follows: In section 2.2, we review the ADI method for

solving Sylvester equations. In section 2.3 we derive an optimal complexity spectral

12
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Poisson solver for (2.1.1). In section 2.4, we use partial regularity to derive fast spectral

methods for Poisson’s equation on the cylinder and solid sphere before discussing

how to do the cube in section 2.5. In section 2.6, we describe how our methods can be

used to solve Poisson’s equation with general boundary conditions.

For notational convenience, throughout this chapter we discretize using the same

number of degrees of freedom in each variable, though our code and algorithms do

not have this restriction. All code used in this chapter is publicly available [70]. The

Poisson solver on the square (see section 2.3) is implemented in Chebfun [58,164] and

can be accessed via the command chebfun2.poisson. It is automatically executed in

Chebop2 [163] when the user inputs Poisson’s equation, and can handle rectangular

domains and general Dirichlet boundary conditions (see section 2.6).

2.2 The alternating direction implicit method

The alternating direction implicit method is an iterative algorithm, originally devised

by Peaceman and Rachford [136], which solves Sylvester equations of the following

form [108]:

AX− XB = F, A, B, F ∈ Cn×n
(2.2.1)

where A, B, and F are known and X ∈ Cn×n
is the desired solution. In general,

the ADI method is executed in an iterative fashion where iterates X0, X1, . . . , are
computed in the hope that ‖X − Xj‖2 → 0 as j → ∞. Algorithm 2.2.1 summarizes

the ADI method in this iterative form. At the start of the jth iteration, two shifts

pj and qj are selected, and at the end of each iteration a test is performed to decide

if the iterative method should be terminated. There are numerous strategies for

selecting the shift parameters and determining when to terminate the iteration [149].

In practice, selecting good shifts for each iteration is of crucial importance for the ADI

method to rapidly converge.

2.2.1 ADI as a direct solver

For an integer J, we would like to know upper bounds on ‖X− XJ‖2 so that we can

determine a priori howmany ADI iterations are required to achieve a relative accuracy

of 0 < ε < 1. To develop error bounds on ‖X− XJ‖2, we desire (2.2.1) to satisfy three

properties. Later, in section 2.3, we will design a spectral discretization of (2.1.1) as a

Sylvester equation with these three properties.

Property 1: Normal matrices

This simplifies the error analysis of the ADI method:

13
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Algorithm 2.2.1 The standard ADI method to solve AX− XB = F

Input: A, B, F ∈ Cn×n

Output: Xj ∈ Cn×n
, an approximate solution to AX− XB = F

1: X0 := 0
2: j := 0
3: do
4: Select ADI shifts pj and qj
5: Solve Xj+1/2(B− pj I) = F− (A− pj I)Xj for Xj+1/2
6: Solve (A− qj I)Xj+1 = F− Xj+1/2(B− qj I) for Xj+1
7: j := j + 1
8: while not converged
9: return Xj

Figure 2.1: Pseudocode for the ADI method described as an iterative algorithm for solving AX− XB = F. The
convergence of Xj to X in the ADI method is particularly sensitive to the shifts p0, p1, . . . and q0, q1, . . .. The
convergence test at the end of each iteration can also be subtle [149, Sec. 2.2]. We do not use this general form of
the ADI method as it does not lead to an algorithm with a provable computational complexity. Instead, we employ
the ADI method on Sylvester equations that satisfy P1–P3, where a different variant of the ADI method can be
employed (see Algorithm 2.2.2).

P1. The matrices A and B are normal matrices.

In particular, when P1 holds there is a bound on the error ‖X − XJ‖2 that only

depends on the eigenvalues of A and B and the shifts p0, . . . , pJ−1 and q0, . . . , qJ−1 [29].

Specifically,

‖X− XJ‖2 ≤
supz∈σ(A) |r(z)|
infz∈σ(B) |r(z)|

‖X‖2, r(z) =
∏J−1

j=0 (z− pj)

∏J−1
j=0 (z− qj)

,

where σ(A) and σ(B) denote the spectra of A and B, respectively. To make the upper

bound on ‖X− XJ‖2 as small as possible, one hopes to select shifts so that

supz∈σ(A) |r(z)|
infz∈σ(B) |r(z)|

= inf
s∈RJ

supz∈σ(A) |s(z)|
infz∈σ(B) |s(z)|

, (2.2.2)

where RJ denotes the space of degree (J, J) rational functions. In general, it is

challenging to calculate explicit shifts so that r(z) attains the infimum in (2.2.2).

However, this problem is (approximately) solved if the next property holds.
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Property 2: Real and disjoint spectra

The following property of (2.2.1) allows us to derive explicit expressions for the ADI

shifts:

P2. There are real disjoint non-empty intervals [a, b] and [c, d] such that σ(A) ⊂ [a, b] and
σ(B) ⊂ [c, d].

If P1 and P2 both hold, then we can relax (2.2.2) and select ADI shifts so that

‖X− XJ‖2 ≤ ZJ([a, b], [c, d])‖X‖2, ZJ([a, b], [c, d]) = inf
s∈RJ

supz∈[a,b] |s(z)|
infz∈[c,d] |s(z)|

, (2.2.3)

where ZJ = ZJ([a, b], [c, d]) is referred to as a Zolotarev number. Since Zolotarev

numbers have been extensively studied in the literature [28, 103, 108, 183], we are able

to derive explicit expressions for the ADI shifts so that (2.2.3) holds. Moreover, we

have an explicit upper bound on ZJ .

Theorem 2.2.1. Let J be a fixed integer and let X satisfy AX− XB = F, where P1 and P2
hold. Run the ADI method with the shifts

pj = T
(
−α dn

[
2j + 1

2J
K(k), k

])
, qj = T

(
α dn

[
2j + 1

2J
K(k), k

])
, (2.2.4)

for 0 ≤ j ≤ J − 1, where k =
√

1− 1/α2, K(k) is the complete elliptic integral of the
first kind [123, (19.2.8)], and dn(z, k) is the Jacobi elliptic function of the third kind [123,
(22.2.6)]. Here, α is the real number given by α = −1 + 2γ + 2

√
γ2 − γ with γ =

|c− a||d− b|/(|c− b||d− a|) and T is theMöbius transformation2 that maps {−α,−1, 1, α}
to {a, b, c, d}. Then, the ADI iterate XJ satisfies

‖X− XJ‖2 ≤ ZJ‖X‖2, ZJ([a, b], [c, d]) ≤ 4
[

exp
(

π2

4µ(1/
√

γ)

)]−2J

, (2.2.5)

where µ(k) = π
2 K(
√

1− k2)/K(k) is the Grötzsch ring function.

Proof. For the α given in the statement of the theorem, there exists a Möbius transfor-

mation T that maps {−α,−1, 1, α} to {a, b, c, d} because the two sets of collinear points

have the same absolute cross-ratio. Since any Möbius transformation maps rational

functions to rational functions, ZJ([−α,−1], [1, α]) = ZJ([a, b], [c, d]) with the zeros

and poles of the associated rational functions (see (2.2.3)) related by the Möbius trans-

formation T. For the equation ÃX̃− X̃B̃ = F where P1 holds with σ(Ã) ⊂ [−α,−1]

2
The Möbius transformation is given by T(z) = (t1z + t2)/(t3z + t4), where t1 = a(−αb + b +

αc + c)− 2bc, t2 = a(α(b + c)− b + c)− 2αbc, t3 = 2a− (α + 1)b + (α− 1)c, and t4 = −α(−2a + b +
c)− b + c.
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and σ(B̃) ⊂ [1, α], the ADI shifts to ensure that ‖X̃− X̃J‖2 ≤ ZJ([−α,−1], [1, α])‖X̃‖2
are given in [108, (2.18)] as

pj = −α dn
[

2j + 1
2J

K
(√

1− 1/α2
)

,
√

1− 1/α2
]

, qj = −pj, 0 ≤ j ≤ J − 1.

(2.2.6)

The formula (2.2.4) is immediately derived as T(pj) and T(qj), where pj and qj are

given in (2.2.6).

We often prefer to simplify the bound in (2.2.5) by removing the Grötzsch ring

function from the bound on ZJ . For example, the bound in (2.2.5) remains valid, but is

slightly weakened, if 4µ(1/
√

γ) is replaced by the upper bound 2 log(16γ) [28], i.e.,

‖X− XJ‖2 ≤ 4
[

exp
(

π2

2 log(16γ)

)]−2J

‖X‖2, γ =
|c− a||d− b|
|c− b||d− a| . (2.2.7)

Moreover, if c = −b and d = −a (which commonly occurs when B = −AT
), then—

relabeling the spectra as [−b,−a] and [a, b]—the bound simplifies even more as

4µ(1/
√

γ) = 2µ(a/b) and the bound remains valid if µ(a/b) is replaced by log(4b/a).
That is,

‖X− XJ‖2 ≤ 4
[

exp
(

π2

2 log(4b/a)

)]−2J

‖X‖2. (2.2.8)

Theorem 2.2.1 is very fruitful as it allows us to use the ADI method as a direct solver

for AX− XB = F when P1 and P2 hold, since it tells us the number of ADI iterations

(and the associated shifts) required to achieve a desired relative error. For a relative

accuracy of 0 < ε < 1, the simplified bound in (2.2.7) shows that ‖X− XJ‖2 ≤ ε‖X‖2
if we take

J =
⌈

log(16γ) log(4/ε)

π2

⌉
(2.2.9)

and we run the ADI method with the shifts given in (2.2.4). Algorithm 2.2.2

summarizes the ADI method on AX − XB = F when P1 and P2 hold. This is the

variant of the ADI method that we employ throughout this work.

We appreciate that it is awkward to calculate the shifts in (2.2.4) because they involve

complete elliptic integrals and Jacobi elliptic functions. For the reader’s convenience,

we provide MATLAB code to compute the shifts in Appendix A. Note that computing

the shifts can be done in O(1) operations, independent of n.

Property 3: Fast shifted linear solves

There is still one more important property of AX− XB = F. The shifted linear solves

in Algorithm 2.2.2 need to be computationally cheap:
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Algorithm 2.2.2 The ADI method to solve AX− XB = F when P1 and P2 hold

Input: A, B, F ∈ Cn×n
, a, b, c, d ∈ R satisfying P2, and a tolerance 0 < ε < 1

Output: XJ ∈ Cn×n
such that ‖X− XJ‖2 ≤ ε‖X‖2

1: γ := |c− a||d− b|/(|c− b||d− a|)
2: J := dlog(16γ) log(4/ε)/π2e
3: Set pj and qj for 0 ≤ j ≤ J − 1 as given in (2.2.4)

4: X0 := 0

5: for j = 0, . . . , J − 1 do
6: Solve Xj+1/2(B− pj I) = F− (A− pj I)Xj for Xj+1/2
7: Solve (A− qj I)Xj+1 = F− Xj+1/2(B− qj I) for Xj+1

8: return XJ

Figure 2.2: Pseudocode for the ADI method for solving AX − XB = F when P1 and P2 hold. Here, for any
relative accuracy 0 < ε < 1 the number of ADI iterations, J, and shifts p0, . . . , pJ−1 and q0, . . . , qJ−1 are known
such that ‖X− XJ‖2 ≤ ε‖X‖2.

P3. For any p, q ∈ C, the linear systems (A− pI)x = b and (B− qI)x = b can be solved
in O(n) operations.

If P3 holds, then each ADI iteration costs only O(n2) operations and the overall cost

of the ADI method with J iterations is O(Jn2) operations.
In summary, properties P1, P2, and P3 are sufficient conditions on AX− XB = F

so that (i) we can determine the number of ADI iterations to attain a relative accuracy

of 0 < ε < 1, (ii) we can derive explicit expressions for the ADI shifts, and (iii) we can

compute each ADI iteration in O(n2) operations.

2.2.2 AnADI-based fast Poisson solver forfinitedifferencemethods

We now describe the ADI-based fast Poisson solver with the second-order five-

point FD stencil, though the approach easily extends to fourth- and sixth-order FD

methods. Recall that the FD discretization of (2.1.1) with a five-point stencil on an

(n + 1)× (n + 1) equispaced grid is given by the Sylvester equation KX + XKT = F
(see (2.1.2)). We now verify that P1, P2, and P3 hold for KX + XKT = F:

P1: A = K and B = −KT
are real and symmetric, so they are normal matrices.

P2: The eigenvalues of K are given by −4/h2 sin2(πk/(2n)) for 1 ≤ k ≤ n − 1
with h = 2/n [104, (2.23)]. Since (2/π)x ≤ sin x ≤ 1 for x ∈ [0, π/2] and
h = 2/n, the eigenvalues of A = K are contained in the interval [−n2,−1]. The
eigenvalues of B = −KT

are contained in [1, n2].
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Figure 2.3: Execution times for the ADI- and FFT-based fast Poisson solvers for a 5-point FD discretization
with 10 ≤ n ≤ 5000. The ADI-based solver is comparable to the FFT-based solver when ε = 10−3. While the
ADI-based fast Poisson solver is computationally more expensive, it is applicable to a carefully designed spectral
discretization. Since FFT-based fast Poisson solvers necessarily require uniform grids, they cannot provide a
practical optimal complexity spectral method [140].

P3: For any p, q ∈ C, the linear systems (A − pI)x = b and (B − qI)x = b are

tridiagonal and hence can be solved via the Thomas algorithm in O(n) opera-
tions [54, p. 162].

From the simplified bound in (2.2.8), we conclude that J = dlog(4n2) log(4/ε)/π2e
ADI iterations are sufficient to ensure that ‖X− XJ‖2 ≤ ε‖X‖2 for 0 < ε < 1, where

the shifts are given in Theorem 2.2.1. Moreover, since P3 holds each ADI iteration only

costs O(n2) iterations. We conclude that the ADI method in Algorithm 2.2.2 solves

KX + XKT = F in a total of O(n2 log n log(1/ε)) operations. Figure 2.3 demonstrates

the execution time
3
of this approach in comparison to the FFT-based fast Poisson

solver for 10 ≤ n ≤ 5000. While we are not advocating the use of the ADI-based fast

Poisson solver for the five-point FD stencil, it does provide flexibility through the

choice of an error tolerance ε and may be useful for higher-order FD methods and

non-uniform grids. As we will show in the next section, ADI-based solvers extend to

carefully designed spectral discretizations (see section 2.3).

We expect that one can also derive ADI-based fast Poisson solvers for any (4w +
1)-point FD stencil, 1 ≤ w ≤ b(n − 1)/2c, that run in an optimal number of

O(n2 log n log(1/ε)) operations. Because FD discretization matrices have Toeplitz

structure, one shifted linear solve only costs O(n log n) operations using FFTs [115].

Unfortunately, for w = b(n− 1)/2c the resulting spectral methodmust be numerically

unstable because it is based on equispaced nodes [140].

3
All timings in this chapter were performed in MATLAB R2017a on a 2017 MacBook Pro with no

explicit parallelization.
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2.3 A fast spectral Poisson solver on the square

Consider Poisson’s equation on the square with homogeneous Dirichlet conditions:

uxx + uyy = f , (x, y) ∈ [−1, 1]2, u(±1, ·) = u(·,±1) = 0. (2.3.1)

Since (2.3.1) has homogeneous Dirichlet conditions, we know that the solution can be

written as u(x, y) = (1− x2)(1− y2)v(x, y) for some function v(x, y). To ensure that

we are deriving a stable spectral method, we expand v(x, y) in a standard orthogonal

polynomial basis
4
[168]. That is,

u(x, y) ≈
n−1

∑
i=0

n−1

∑
j=0

Xij(1− y2)(1− x2)φi(y)φj(x), (x, y) ∈ [−1, 1]2, (2.3.2)

where φ0, φ1, . . . , are a sequence of orthogonal polynomials on [−1, 1] and the degree

of φj is exactly j for j ≥ 0. Here, X ∈ Cn×n
is the matrix of expansion coefficients of

the solution
5
and we wish to find X so that the first n× n coefficients of uxx + uyy

match those of f . The choice of the orthogonal polynomial basis is critically important

to derive our optimal complexity ADI-based fast Poisson solver. In particular, we

want to construct a Sylvester equation for which P1, P2, and P3 hold. If, for example,

the Chebyshev basis is selected, then the resulting Sylvester equation does not satisfy

P1 from section 2.2.

2.3.1 An ultraspherical polynomial basis

To simplify the discretization of uxx in (2.3.1), we select φj so that
d2

dx2

[
(1− x2)φj(x)

]
has a simple form in terms of φj(x). By the chain rule, we have

d2

dx2

[
(1− x2)φj(x)

]
= (1− x2)φ

′′
j (x)− 4xφ

′
j(x)− 2φj(x), (2.3.3)

4
Additional benefits of choosing standard orthogonal polynomials include fast evaluation using

Clenshaw’s algorithm and fast transforms.

5
More generally, the solution could be represented using a rectangular m× n discretization, with

different discretization sizes in the x- and y-directions. Though we assume m = n throughout this

chapter, our results hold for m 6= n and our code supports rectangular discretizations [70].
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where a prime indicates one derivative in x. In [123, Chap. 18], one finds that

the normalized ultraspherical polynomial,
6
denoted by C̃(3/2)

j (x), of degree j and
parameter 3/2 satisfies the second-order differential equation [123, Table 18.8.1]

(1− x2)C̃(3/2)
j

′′
(x)− 4xC̃(3/2)

j
′
(x) + j(j + 3)C̃(3/2)

j (x) = 0, x ∈ [−1, 1]. (2.3.4)

In particular, this means that C̃(3/2)
j (x) is an eigenfunction of the differential operator

u 7→ d2

dx2

[
(1− x2)u

]
, i.e.,

d2

dx2

[
(1− x2)C̃(3/2)

j (x)
]
= −(j(j + 3) + 2)C̃(3/2)

j (x), j ≥ 0.

Encouraged by this simplification, we select φj = C̃(3/2)
j in (2.3.2).

2.3.2 A spectral discretization of Poisson’s equation

To construct a discretization of (2.3.1), we apply the Laplacian to the expansion in

(2.3.2) to derive a set of equations that the matrix X must satisfy. The action of the

Laplacian on each element of our basis is given by

∇2
[
(1− y2)(1− x2)C̃(3/2)

i (y)C̃(3/2)
j (x)

]
= −

[
(j(j + 3) + 2)(1− y2) + (i(i + 3) + 2)(1− x2)

]
C̃(3/2)

i (y)C̃(3/2)
j (x).

(2.3.5)

Therefore, we can discretize (2.3.1) as a generalized Sylvester equation

MXDT + DXMT = F, (2.3.6)

where X is the matrix of (1− y2)(1− x2)C̃(3/2)(y)C̃(3/2)(x) expansion coefficients for

the solution u(x, y) in (2.3.2), F is the matrix of bivariate C̃(3/2)
expansion coefficients

for f (see subsection 2.3.4), D is a diagonal matrix with Djj = −(j(j + 3) + 2), and M
is the n× n matrix that represents multiplication by 1− x2

in the C̃(3/2)
basis. Since

6
The ultraspherical polynomial of degree j and parameter λ > 0 is denoted by C(λ)

j , where

C(λ)
0 , C(λ)

1 , . . . are orthogonal on [−1, 1] with respect to the weight function (1 − x2)λ−1/2
. The

normalized ultraspherical polynomials of parameter 3/2, denoted by C̃(3/2)
j , satisfy

C̃(3/2)
j (x) =

√
j + 3/2

(j + 1)(j + 2)
C(3/2)

j (x), j ≥ 0,

so that

∫ 1
−1(C̃

(3/2)
j (x))2(1− x2)dx = 1.
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the recurrence relation for the unnormalized ultraspherical polynomials, C(3/2)
, is

given by [123, (18.9.7) & (18.9.8)]

(1− x2)C(3/2)
j (x) = − (j + 1)(j + 2)

(2j + 1)(2j + 3)(2j + 5)

[
(2j + 1)C(3/2)

j+2 (x)− 2(2j + 3)C(3/2)
j (x)

+ (2j + 5)C(3/2)
j−2 (x)

]
,

we find—after algebraic manipulations—that M is a symmetric pentadiagonal matrix

with

Mj,j =
2(j + 1)(j + 2)
(2j + 1)(2j + 5)

, Mj,j+1 = 0, Mj,j+2 =
−1

(2j + 3)(2j + 5)

√
(j + 4)!(2j + 3)

j!(2j + 7)
.

(2.3.7)

We can rearrange (2.3.6) by applying D−1
to obtain the standard Sylvester equation

AX− XB = D−1FD−1, A = D−1M, B = −MTD−1. (2.3.8)

2.3.3 Verifying that P1, P2, and P3 hold

To guarantee that the ADI method for solving (2.3.8) has optimal complexity, we want

the Sylvester equation to satisfy P1, P2, and P3 (see section 2.2). However, the matrices

A and B in (2.3.8) are not normal matrices, so we do not solve (2.3.8) using the ADI

method directly; we first transform them into the normal matrices Ã = D1/2AD−1/2

and B̃ = −ÃT = −Ã. Therefore, to solve (2.3.8) we solve the following Sylvester

equation:

ÃY−YB̃ = D−1/2FD−1/2, Y = D1/2XD−1/2, (2.3.9)

and recover X via X = D−1/2YD1/2
. We now verify that P1, P2, and P3 hold for

(2.3.9):

P1: Ã and B̃ are real and symmetric so are normal matrices,

P2: The eigenvalues of Ã are contained in the interval [−1/2,−1/(2n4)] (see Ap-

pendix B). The eigenvalues of B̃ = −ÃT
are contained in [1/(2n4), 1/2].

P3: For any p, q ∈ C, the linear systems (Ã − pI)x = b and (B̃ − qI)x = b are

pentadiagonal matrices with zero sub- and super-diagonals. Hence, they can be

solved in O(n) operations using the Thomas algorithm [54, p. 162].

By Theorem 2.2.1, we need at most

J = dlog(4n4) log(4/ε)/π2e.
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Figure 2.4: Left: A computed solution to Poisson’s equation on the square with right-hand side f (x, y) =
−100x sin(20πx2y) cos(4π(x + y)) and n = 200, using an error tolerance of ε = 10−13. Right: Execution
times for solving uxx + uyy = f on [−1, 1]2 with homogeneous Dirichlet boundary conditions, using our
ADI-based solver with various error tolerances, the Bartels–Stewart algorithm [23], and MATLAB’s sparse direct
solver. The Bartels–Stewart algorithm necessarily densifies its matrices and so cannot exploit the sparsity present
in our discretization.

ADI iterations to ensure that we solve (2.3.9) to within a relative accuracy of 0 < ε < 1.
Since P3 holds, the ADI method solves (2.3.9) in O(n2 log n log(1/ε)) operations, and
an additional O(n2) operations recovers X from Y.

It is worth reiterating that we use ADI as a direct solver, not an iterative method,

here. In particular, it is only the polynomial degree n used to resolve the solution

and righthand side that contributes a factor of log(n) to the number of ADI iterations

required. If the rank of the righthand side is r, one can show that the rank of

the solution is at most rJ [29]. For small r, the factored ADI (fADI) method can

be employed to exploit this low rank structure, resulting in O(rn log n log(1/ε))
operations. Moreover, if the righthand side is a smooth function, this structure can

also be exploited by factored-independent ADI (FI-ADI) [166]. Our discretizations

can be immediately used with both fADI and FI-ADI.

The eigenvalue bounds provided by P2—while disjoint for any finite n—collide as

n → ∞, suggesting that for large n numerical stability may be an issue in practice.

We have investigated the conditioning of (2.3.9) for a range of values of n using the

condition number for Sylvester equations given in [92]. For n = 100, we observe a

condition number of 106
; for n = 1000, the condition number is 1010

. (These bounds

are worst-case and are not observed to be sharp, however.) In practice, the convergence

rate does not suffer due to the colliding intervals for practical values of n.
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2.3.4 Computing the ultraspherical coefficients of a function

So far our Poisson solver assumes that (a) one is given the C̃(3/2)
expansion coefficients

for f in (2.3.1) and (b) one is satisfied with the solution returned in the form (2.3.2).

It is known how to compute the Legendre expansion coefficients F
leg

from f in

O(n2(log n)2 log(1/ε)) operations [165].7 Using the fact that [123, (18.7.9) & (18.9.7)]

(j + 1
2)Pj(x) =

√
(j + 1)(j + 2)
(j + 3/2)

C̃(3/2)
j (x)−

√
j(j− 1)
(j− 1/2)

C̃(3/2)
j−2 (x), j ≥ 2,

there is a sparse upper-triangular matrix S that converts Legendre coefficients to

C̃(3/2)
coefficients. Moreover, we can compute F = S−1F

leg
S−T

in O(n2) operations
by backwards substitution.

Once the expansion coefficients X in (2.3.2) are known, one can convert the expan-

sion coefficients to a Legendre or Chebyshev basis. The normalized ultraspherical

coefficients are given by X
ultra

= MXMT
because of the (1− y2)(1− x2) factor in

(2.3.2). To obtain the Legendre coefficients for u, we note that X
leg

= SX
ultra

ST
. One

can now construct a bivariate Chebyshev expansion of u.8

2.3.5 Numerical experiments

Table 2.1 summarizes our optimal complexity spectral Poisson solver. The overall

complexity is O(n2(log n)2 log(1/ε)), after the coefficient transforms are taken into

account.

Figure 2.4 shows our method compared to the Bartels–Stewart algorithm [23]

(invoked via the lyap command in MATLAB) and MATLAB’s sparse direct solver

used to solve the Sylvester equation (2.3.8). The Bartels–Stewart algorithm costsO(n3)
operations and the direct solver costs an observed O(n2.5) operations9; as the timings

demonstrate, our method is significantly faster once n is larger than a few hundred,

and for large n the sparse direct solver quickly runs into memory constraints. In

addition, there are important advantages of ADI in our setting: we are able to relax

the tolerance ε according to the application, allowing the algorithm to exploit that

parameter for a reduced computational cost. The solver can also easily be extended

to any rectangular domain [a, b] × [c, d]. Our Poisson solver on the rectangle can

be accessed in [70] via the command poisson_rectangle(F, lbc, rbc, dbc, ubc,

7
The Chebfun code to compute the n× n Legendre coefficients of f is g = chebfun2(@(x,y)

f(x,y)); Fleg = cheb2leg(cheb2leg(chebcoeffs2(g,n,n)).’).’; [58].
8
The Chebfun code to construct a bivariate Chebyshev expansion from a matrix of Legendre

coefficients is u = chebfun2( leg2cheb(leg2cheb(Xleg).’).’, ’coeffs’ ); [58].
9
The complexity is hard to tell from the timings directly. MATLAB’s backslash command invokes

UMFPACK with an approximate minimum degree reordering of the columns and rows. The number

of nonzeros in the LU decomposition of the permuted linear system scales like O(n2.5), demonstrating

that the solver costs at least O(n2.5) operations.
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Table 2.1: Summary of our optimal complexity spectral Poisson solver on the square with an n× n discretization.
The algorithm costs O(n2(log n)2 log(1/ε)) operations for a working tolerance of 0 < ε < 1. For n ≤ 5000,
the dominating computational cost in practice is the ADI method.

Algorithmic step Cost

1. Compute the C̃(3/2)
coefficients of f in (2.3.1) using [165] O(n2(log n)2 log(1/ε))

2. Solve (2.3.9) via the ADI method O(n2 log n log(1/ε))

3. Compute the solution to (2.3.8) as X = D−1/2YD1/2 O(n2)

4. Compute the Chebyshev coefficients of u using [165] O(n2(log n)2 log(1/ε))

[a b c d], tol), where F is the matrix of bivariate Chebyshev coefficients for the

right-hand side, lbc, rbc, dbc, and ubc denote the left, right, bottom and top Dirichlet

data, respectively, and tol is the error tolerance.

2.4 Fast spectralPoisson solvers on cylindrical andspher-
ical geometries

We now describe how to extend our fast Poisson solver to cylindrical and spherical

geometries. We exploit the fact that both the cylindrical and spherical Laplacians

decouple in the azimuthal variable, allowing us to reduce the full three-dimensional

problem into n independent two-dimensional problems that can be solved by ADI. On

both geometries, we employ a variant of the double Fourier sphere method [117] (see

subsection 2.4.1.1) and impose partial regularity on the solution to ensure smoothness.

2.4.1 A fast spectral Poisson solver on the cylinder

Here, we consider solving Poisson’s equation on the cylinder, i.e., uxx + uyy + uzz = f
on x2 + y2 ∈ [0, 1] and z ∈ [−1, 1] with homogeneous Dirichlet conditions. Our first

step is to change to the cylindrical coordinate system, i.e., (x, y, z) = (r cos θ, r sin θ, z),
where r ∈ [0, 1] is the radial variable and θ ∈ [−π, π] is the angular variable. This

change-of-variables transforms Poisson’s equation to

∂2u
∂r2 +

1
r

∂u
∂r

+
1
r2

∂2u
∂θ2 +

∂2u
∂z2 = f , (r, θ, z) ∈ [0, 1]× [−π, π]× [−1, 1], (2.4.1)

where u(1, θ, z) = 0 for (θ, z) ∈ [−π, π] × [−1, 1] and u(r, θ,±1) = 0 for (r, θ) ∈
[0, 1]× [−π, π].
The coordinate transform has simplified the domain of the differential equation to

a rectangle, but has several issues: (1) Any point of the form (0, θ, z) with θ ∈ [−π, π]
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(a) (b) (c)

Figure 2.5: Illustration of the DFS method for a Rubik’s cube-colored cylinder. (a) The Rubik’s cube-colored
cylinder. (b) The Rubik’s cube-colored cylinder projected into cylindrical coordinates. (c) The Rubik’s cube-colored
cylinder after applying the DFS method. The DFS method represents a smooth function f (x, y, z) on the cylinder
with a function f (r, θ, z) on [−1, 1]× [−π, π]× [−1, 1] that is 2π-periodic in θ and f (0, θ, z) is a constant for
each θ ∈ [−π, π] and z ∈ [−1, 1].

and z ∈ [−1, 1] maps to (0, 0, z) in Cartesian coordinates, introducing an artificial

singularity along the center line r = 0, (2) The differential equation in (2.4.1) is

second-order in the r-variable, but we do not have a natural boundary condition to

impose at r = 0, and (3) Not every function in the variables (r, θ, z) is a well-defined

function on the cylinder, so additional constraints must be satisfied by u = u(r, θ, z)
in (2.4.1).

2.4.1.1 The double Fourier sphere method for the cylinder

The double Fourier sphere (DFS) method, originally proposed for computations on

the surface of the sphere [66,117,167], is a simple technique that alleviates many of

the concerns with cylindrical coordinate transforms. Instead of solving (2.4.1), we

“double-up” u and f to ũ and f̃ and solve

∂2ũ
∂r2 +

1
r

∂ũ
∂r

+
1
r2

∂2ũ
∂θ2 +

∂2ũ
∂z2 = f̃ , (r, θ, z) ∈ [−1, 1]× [−π, π]× [−1, 1], (2.4.2)

where the r-variable is now over [−1, 1], instead of [0, 1]. Here, the solution u (resp. f )
is doubled-up as follows:

ũ(r, θ, z) =

{
u(r, θ, z), (r, θ, z) ∈ [0, 1]× [−π, π]× [−1, 1],
u(−r, θ + π, z), (r, θ, z) ∈ [−1, 0]× [−π, π]× [−1, 1]

(2.4.3)

and the homogeneous Dirichlet conditions become ũ(±1, θ, z) = 0 for (θ, z) ∈
[−π, π]× [−1, 1] and ũ(r, θ,±1) = 0 for (r, θ) ∈ [−1, 1]× [−π, π]. Figure 2.5 illus-

trates the DFS method when applied to a Rubik’s cube-colored cylinder. Although

doubling up leads us to overresolve the solution on the cylinder by a factor of two,

this modest cost is outweighed by the optimal complexity of the proposed solver.
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The doubled-up functions ũ and f̃ are non-periodic in the r- and z-variables,
and 2π-periodic in the θ-variable. Therefore, we seek the coefficients for ũ in a

Chebyshev–Fourier–Chebyshev expansion:

ũ(r, θ, z) ≈
n/2−1

∑
k=−n/2

ũk(r, z)eikθ, ũk(r, z) =
n−1

∑
i=0

n−1

∑
j=0

X(k)
ij Ti(r)Tj(z), (2.4.4)

where we assume that n is an even integer and ũk(r, z) denotes the kth Fourier mode

of ũ(r, ·, z). We have written the Chebyshev–Fourier–Chebyshev expansion in this

form because it turns out that each Fourier mode can be solved for separately. Since

f̃ (r, θ, z) ≈ ∑n/2−1
k=−n/2 f̃k(r, z)eikθ

, we can plug (2.4.4) into (2.4.2) to find that

∂2ũk
∂r2 +

1
r

∂ũk
∂r
− k2

r2 ũk +
∂2ũk
∂z2 = f̃k, (r, z) ∈ [−1, 1]× [−1, 1], (2.4.5)

for each −n/2 ≤ k ≤ n/2− 1. This allows us to solve the trivariate PDE in (2.4.2)

with a system of n independent bivariate PDEs for each uk(r, z).

2.4.1.2 Imposing partial regularity on the solution

The issue with (2.4.4) is that a Chebyshev–Fourier–Chebyshev expansion in (r, θ, z)
does not necessarily represent a smooth function in (x, y, z) on the cylinder. For

instance, ũ(0, θ, z) must be a function of the z-variable only for the corresponding

function on the cylinder to be continuous. Since we have x = r cos θ and y = r sin θ,

we know that the kth Fourier mode ũk(r, z) must decay like O(r|k|) as r → 0. By the

uniqueness of Fourier expansions, we also know that ũk(±1, z) = 0 and ũk(r,±1) = 0
for −n/2 ≤ k ≤ n/2− 1. Therefore, we know that there must be a function

10 ṽk(r, z)
such that

ũk(r, z) = (1− r2)(1− z2)r|k|ṽk(r, z), −n
2
≤ k ≤ n

2
− 1. (2.4.6)

Ideally, we would like to numerically compute for a bivariate Chebyshev expansion

for ṽk(r, z) and then recover ũk(r, z) from (2.4.6). This would ensure that the solution

ũ(r, θ, z) corresponds to a smooth function on the cylinder.

Unfortunately, imposing full regularity on ũk(r, z) is numerically problematic

because the regularity condition involves high-order monomial powers. The idea of

imposing partial regularity on ũk(r, z) avoids the high degree monomial terms [162],

and instead ũk(r, z) is written as:

ũk(r, z) = (1− r2)(1− z2)rmin(|k|,2)ω̃k(r, z), −n
2
≤ k ≤ n

2
− 1, (2.4.7)

10
One can also show that ṽk(r, z) must be an even (odd) function of r if k is even (odd).
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where the regularity requirements from (2.4.6) are relaxed. If the functions ω̃k(r, z)
are additionally imposed to be even (odd) in r if k is even (odd), then the function

ũ(r, θ, z) corresponds to at least a continuously differentiable function on the cylinder.

It is worth noting that the imposition of partial regularity on the solution does

not seem to affect convergence of our solver to the solutions on either the cylinder

or the solid sphere. Our experiments exhibit convergence rates commensurate with

the smoothness of the solution, which agrees with previous observations from the

disk [162].

2.4.1.3 A solution method for each Fourier mode

The partial regularity conditions in (2.4.7) naturally split into three cases that we

treat separately: |k| ≥ 2 (Case 1), |k| = 1 (Case 2), and k = 0 (Case 3) . In terms of

developing a fast Poisson solver for (2.4.1), it is only important that the PDEs in (2.4.5)

for |k| ≥ 2 are solved in optimal complexity.

Case 1: |k| ≥ 2. The idea is to solve for the function ω̃k(r, z), where ũk(r, z) =
r2(1− r2)(1− z2)ω̃k(r, z) and afterwards to recover ũk(r, z). To achieve this, we find

the differential equation that ω̃k(r, z) satisfies by substituting (2.4.7) into (2.4.5). After

simplifying, we obtain the following equation:[
r2(1− r2)

∂2ω̃k
∂r2 + (5− 9r2)r

∂ω̃k
∂r

+ 4(1− 4r2)ω̃k︸ ︷︷ ︸
=L1

−k2(1− r2)ω̃k

]
(1− z2)

+ r2(1− r2)

[
(1− z2)

∂2ω̃k
∂z2 − 4z

∂ω̃k
∂z
− 2ω̃k

]
︸ ︷︷ ︸

=L2

= f̃k,

(2.4.8)

where no boundary conditions are required. Focusing on the z-variable, we observe

that L2 is identical to the differential equation in subsection 2.3.1. Therefore, we

represent the z-variable of ω̃k(r, z) in an ultraspherical expansion because C̃(3/2)
j is

an eigenfunction of L2. For the r-variable, we also use the C̃(3/2)
basis because the

multiplication matrix for (1− r2) is a normal matrix (see (2.3.7)).

Since the k2(1− r2)ω̃k term dominates L1 when k is large, the discretization of

L1 − k2(1− r2)ω̃k in the C̃(3/2)
basis is a near-normal

11
matrix; the matrix tends to a

normal matrix as k→ ∞. Therefore, we represent ω̃k(r, z) as

ω̃k(r, z) ≈
n−1

∑
i=0

n−1

∑
j=0

Y(k)
ij C̃(3/2)

i (r)C̃(3/2)
j (z). (2.4.9)

11
A matrix is near-normal if the condition number of its eigenvector matrix is close to one.
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One can show that an n× n discretization of L1 is given by

L1 = Mr2 D + 5Mr M1−r2 D1 + 14M1−r2 − 6I,

where D is given in (2.3.6), M1−r2 = M (see (2.3.7)), I is the n× n identity matrix,

Mr2 = I −M1−r2 , Mr is multiplication by r in the C̃(3/2)
basis and D1 is the first-order

differentiation matrix. While D1 is a upper-triangular dense matrix, we note that

M1−r2 D1 is a tridiagonal matrix from [123, (18.9.8) & (18.9.19)]. Moreover, Mr is a

tridiagonal matrix [123, Tab. 18.9.1] and hence, L1 is a pentadiagonal matrix.

Looking at (2.4.8), we find that the coefficient matrix Y(k)
in (2.4.9) satisfies

(L1 − k2M1−r2)Y(k)MT
1−r2 + Mr2 M1−r2Y(k)D = Fk,

which after rearranging becomes the following Sylvester equation:

AY(k) −Y(k)B = (L1 − k2M1−r2)−1FkD−1, (2.4.10)

where A = (L1 − k2M1−r2)−1M1−r2 and B = −MT
1−r2 D−1

. Here, B is a normal

pentadiagonal matrix after a diagonal similarity transform and A is a near-normal

matrix which tends to a normal matrix as k gets large. Moreover, we observe

that A has real eigenvalues that are well-separated from the eigenvalues of B and

we can solve linear systems of the form (A − pI)x = b in O(n) operations as

(M1−r2 − p(L1 − k2M1−r2))x = (L1 − k2M1−r2)b. Therefore, we can apply ADI to

(2.4.10) to solve for each Y(k)
in O(n2(log n)2 log(1/ε)) operations. Since there are

O(n) such Y(k)
, the total complexity is O(n3(log n)2 log(1/ε)). We recover ũk(r, z)

via the relation ũk(r, z) = r2(1− r2)(1− z2)ω̃k(r, z).

Case 2: |k| = 1. We continue to represent ω̃k(r, z) in the expansion (2.4.9). When

|k| = 1, we find that ω̃k(r, z) satisfies the following partial differential equation:[
r(1− r2)

∂2ω̃k
∂r2 + (3− 7r2)

∂ω̃k
∂r
− 8rω̃k

]
︸ ︷︷ ︸

=L3

(1− z2)

+ r(1− r2)

[
(1− z2)

∂2ω̃k
∂z2 − 4z

∂ω̃k
∂z
− 2ω̃k

]
= f̃k.

We can discretize this as

L3Y(k)MT
1−r2 + Mr M1−r2Y(k)D = Fk

and solve with the Bartels–Stewart algorithm, costing O(n3) operations. Since

there are only two Fourier modes with |k| = 1, this does not dominate the overall
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Figure 2.6: Left: A computed solution to Poisson’s equation on the cylinder, shown on various slices through the
cylinder. The right-hand side f is such that the exact solution is u(x, y, z) = (1− x2− y2)(1− z2)(z cos 4πx2 +
cos 4πyz). Middle: Execution times for the Poisson solver on the cylinder with an error tolerance of ε = 10−13.
Right: A computed solution to Poisson’s equation on the solid sphere, shown on various slices through the sphere.
The right-hand side f is such that the exact solution is u(r, θ, φ) = (1− r2)(r sin φ)2ei2θ .

computational complexity of the Poisson solver when n is large. We recover ũk(r, z)
via the relation ũk(r, z) = r(1− r2)(1− z2)ω̃k(r, z).

Case 3: k = 0. Finally, the zero Fourier mode satisfies ũ0(r, z) = (1− r2)(1−
z2)ω̃0(r, z) where[

r2(1− r2)
∂2ω̃0

∂r2 + (1− 5r2)r
∂ω̃0

∂r
− 4r2ω̃0

]
︸ ︷︷ ︸

=L4

(1− z2)

+ r2(1− r2)

[
(1− z2)

∂2ω̃0

∂z2 − 4z
∂ω̃0

∂z
− 2ω̃0

]
= r2 f̃0.

We can discretize this as L4Y(0)MT
1−r2 + Mr2 M1−r2Y(0)D = Mr2 F0 and solve using the

Bartels–Stewart algorithm, costing O(n3) operations. Again, this cost is negligible for

large n since there is only one Fourier mode with k = 0.

Figure 2.6 shows a computed solution to Poisson’s equation on the cylinder using this

algorithm and confirms the optimal complexity of the resulting solver. Our Poisson

solver on the cylinder can be accessed in [70] via the command poisson_cylinder(F,

tol), where F is the tensor of trivariate Chebyshev–Fourier–Chebyshev coefficients

for the doubled-up right-hand side and tol is the error tolerance.

2.4.2 A fast spectral Poisson solver on the solid sphere

Consider Poisson’s equation on the unit ball, i.e., uxx + uyy + uzz = f on x2 + y2 + z2 ∈
[0, 1]with homogeneousDirichlet conditions. Ourfirst step is to change to the spherical

coordinate system, i.e., (x, y, z) = (r cos θ sin φ, r sin θ sin φ, r cos φ) where r ∈ [0, 1] is
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the radial variable, θ ∈ [−π, π] is the azimuthal variable, and φ ∈ [0, π] is the polar
variable. This change of variables transforms Poisson’s equation to

∂2u
∂r2 +

2
r

∂u
∂r

+
1
r2

∂2u
∂φ2 +

cos φ

r2 sin φ

∂u
∂φ

+
1

r2 sin2 φ

∂2u
∂θ2 = f (2.4.11)

for (r, θ, φ) ∈ [0, 1] × [−π, π] × [0, π], where u(1, θ, φ) = 0 for (θ, φ) ∈ [−π, π] ×
[0, π].
Similar to the cylinder, we use the DFS method to double-up u and f in both the r-

and φ-variables and solve for ũ over the domain (r, θ, φ) ∈ [−1, 1]× [−π, π]× [−π, π].
The doubled-up functions are non-periodic in the r-variable and 2π-periodic in the

θ- and φ-variables, leading us to seek the coefficients for ũ in a Chebyshev–Fourier–

Fourier expansion:

ũ(r, θ, φ) ≈
n/2−1

∑
k=−n/2

ũk(r, φ)eikθ, ũk(r, φ) =
n−1

∑
j=0

n/2−1

∑
`=−n/2

X(k)
j` Tj(r)ei`φ,

where again we have written the expansion in this form because each Fourier mode

in θ can be solved for separately. In this case, doubling up leads us to overresolve the

solution on the solid sphere by a factor of four, which is again outweighed by the

optimal complexity of the proposed solver.

As in the cylinder case, to ensure smoothness in (x, y, z) on the solid sphere

we will impose partial regularity on ũk(r, φ). Since we have x = r cos θ sin φ and

y = r sin θ sin φ, we know that the kth θ-Fourier mode ũk(r, φ) must decay like

O((r sin φ)|k|) as r sin φ→ 0. Therefore, we impose the partial regularity condition:

ũk(r, φ) = (1− r2)(r sin φ)min(|k|,2)ω̃k(r, φ), −n
2
≤ k ≤ n

2
− 1,

and solve for ω̃k(r, φ). Again, the partial regularity requirement naturally splits into

three cases that we treat separately: |k| ≥ 2, |k| = 1, and k = 0. If we represent the

r-variable of ω̃k(r, φ) using the C̃(3/2)
i basis in r, then for |k| ≥ 2 we obtain n decoupled

sparse Sylvester equations with near-normal matrices which we can solve using ADI

in O(n2(log n)2 log(1/ε)) operations. For k = −1, 0, 1, we use the Bartels–Stewart

algorithm to solve the Sylvester equation directly in O(n3) operations.
Figure 2.6 shows a computed solution to Poisson’s equation on the solid sphere

using this algorithm. Our Poisson solver on the solid sphere can be accessed in [70]

via the command poisson_solid_sphere(F, tol), where F is the tensor of trivariate

Chebyshev–Fourier–Fourier coefficients for the doubled-up right-hand side and tol

is the error tolerance.
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2.5 A fast spectral Poisson solver on the cube

Consider Poisson’s equation on the cube with homogeneous Dirichlet conditions:

uxx + uyy + uzz = f , (x, y, z) ∈ [−1, 1]3, u(±1, ·, ·) = u(·,±1, ·) = u(·, ·,±1) = 0
(2.5.1)

From section 2.3, we can discretize (2.5.1) as(
Dxx + Dyy + Dzz

)
vec(X) = vec(F), (2.5.2)

where X, F ∈ Cn×n×n
, Dxx = A⊗ A⊗ I, Dyy = A⊗ I ⊗ A, and Dzz = I ⊗ A⊗ A.

Here, A = D−1M is the pentadiagonal matrix from section 2.3, I is the n× n identity

matrix, ‘⊗’ is the Kronecker product, and vec(·) is the vectorization operator.

Unlike for the cylinder and sphere, there is no decoupling that allows us to reduce

the three-term equation into n two-term equations. Therefore, we would like to

solve (2.5.2) using a generalization of the ADI method without constructing the large

Kronecker product matrices; however, it is unclear how to generalize ADI to handle

more than two terms at a time [173, p. 31]. Instead, we employ the nested ADI method

described in [172]. This simply involves grouping the first two terms together and

performing the ADI-like iteration given by

(Dzz − pi,1 I) vec(Xi+1/2) = vec(F)− ((Dxx + Dyy)− pi,1 I) vec(Xi) (2.5.3)

((Dxx + Dyy)− qi,1 I) vec(Xi+1) = vec(F)− (Dzz − qi,1 I) vec(Xi+1/2) (2.5.4)

for suitable choices of the shift parameters pi,1 and qi,1. Since the matrices Dxx, Dyy,

and Dzz are Kronecker products involving two copies of A and the identity matrix,

it can be shown that the eigenvalue bounds on Dxx, Dyy, and Dzz are the same as in

section 2.3, but squared. Thus, we require O(log n) iterations of (2.5.3)–(2.5.4).
To solve the two-term equation (2.5.4), we can apply a nested ADI iteration to the

matrices Dxx − qi,1
2 I and Dyy − qi,1

2 I as follows:((
Dxx − qi,1

2 I
)
− pj,2 I

)
vec(Yj+1/2) = Fi −

((
Dyy − qi,1

2 I
)
− pj,2 I

)
vec(Yj)

(2.5.5)((
Dyy − qi,1

2 I
)
− qj,2 I

)
vec(Yj+1) = Fi −

((
Dxx − qi,1

2 I
)
− qj,2 I

)
vec(Yj+1/2)

(2.5.6)

where Fi = vec(F) − (Dzz − qi,1 I) vec(Xi+1/2). After the iteration converges, the

solution to (2.5.4) is obtained as Xi+1 := Yj+1. For the optimal choices of pj,2 and qj,2
(see section 2.2) we expect (2.5.5)–(2.5.6) to converge in O(log n) iterations.

Finally, we are left with solving the three linear systems (2.5.3), (2.5.5), and (2.5.6),

which each involve a shifted Kronecker system. Each Kronecker system is actually

degenerate in one dimension, due to the presence of the identity matrix. Thus, we
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Figure 2.7: Left: A computed solution to Poisson’s equation on the cube, shown on various slices through the
cube. The right-hand side f is such that the exact solution is u(x, y, z) = (1− x2)(1− y2)(1− z2) cos(xyz2).
Right: Execution times for the Poisson solver on the cube with an error tolerance of ε = 10−13.

can decouple (2.5.3), (2.5.5), and (2.5.6) along that degenerate dimension and solve n
decoupled systems independently. For example, to solve (2.5.3) for Xi+1/2 we solve

AXi+1/2(:, :, k)AT − pi,1Xi+1/2(:, :, k) = Fi(:, :, k), 1 ≤ k ≤ n, (2.5.7)

where X(:, :, k) denotes the kth slice of the tensor X in the z-dimension and Fi =
vec(F)− ((Dxx + Dyy)− pi,1 I) vec(Xi). To solve each of the decoupled systems (2.5.7),

we can perform yet another nested ADI iteration. If we rewrite (2.5.7) in the form

pi,1A−1Xi+1/2(:, :, k)− Xi+1/2(:, :, k)AT = A−1Fi(:, :, k)

then the iteration for each k becomes

Z`+1/2(AT − p`,3 I) = A−1Fi(:, :, k)− (pi,1A−1 − p`,3 I)Z` (2.5.8)

(pi,1 I − q`,3A)Z`+1 = AFi(:, :, k)− AZ`+1/2(AT − q`,3 I). (2.5.9)

After the iteration converges, the solution to (2.5.3) is obtained for each k as

Xi+1/2(:, :, k) := Z`+1. Note that we have multiplied (2.5.9) by A so that (2.5.8)–

(2.5.9) can be solved fast. For suitable choices of p`,3 and q`,3, this will converge in

O(log n) iterations. Thus, as in section 2.3, each of the n decoupled equations can be

solved in O(n2 log n) operations, allowing (2.5.3), (2.5.5), and (2.5.6) to be solved in

O(n3 log n) operations. Since there are two levels of nested ADI iterations above this

inner computation, the solution to (2.5.1) requires O(n3(log n)3 log(1/ε)) operations.
Figure 2.7 shows a computed solution to Poisson’s equation on the cube using this

algorithm and confirms the optimal complexity of the resulting solver. We stress

that though this is observed to be an optimal complexity spectral method to solve

(2.5.1), it is far from a practical algorithm; the inner ADI iterations must be solved to
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machine precision to assure that the outer iterations will converge, resulting in large

algorithmic constants that dominate for realistic choices of n. Proper tensor-based
approaches [110, 133] based on, e.g., the tensor-train decomposition [132], may be

the right choice to develop a practical optimal complexity spectrally-accurate solver

for (2.5.1). As in section 2.3, the solver can also be extended to general box-shaped

domains. Our Poisson solver on the cube can be accessed in [70] via the command

poisson_cube(F, tol), where F is the tensor of trivariate Chebyshev coefficients for

the right-hand side and tol is the error tolerance.

2.6 Nontrivial boundary conditions

So far we have assumed homogeneous Dirichlet boundary conditions. We now

describe how to extend our method to handle more general boundary conditions.

2.6.1 Nonhomogeneous Dirichlet conditions

To extend our solver to handle nonhomogeneous Dirichlet conditions, we convert

the nonhomogeneous problem into a homogeneous one by moving the boundary

conditions to the right-hand side. That is,

1. Compute the coefficients X
bc

of a function u
bc

satisfying the Dirichlet data but not

necessarily satisfying Poisson’s equation (see Appendix C).

2. Compute the Laplacian of u
bc
.

3. Solve the modified equation ∇2u
rhs

= f −∇2u
bc

with homogeneous Dirichlet

boundary conditions for the coefficients X
rhs

.

4. The original solution is then obtained as X = X
rhs

+ X
bc
.

Note that the above steps are in coefficient space and can be done fast. This treatment

of Dirichlet conditions works for any of the domains discussed in this work.

2.6.2 Neumann and Robin

For Neumann or Robin boundary conditions we must abandon bases containing

(1− x2) factors and employ a more general discretization scheme. The ultraspherical

spectral method [126,163] discretizes linear PDEs by generalized Sylvester equations

with sparse, well-conditioned matrices and can handle boundary conditions in the

form of general linear constraints. For Poisson’s equation with Neumann or Robin

boundary conditions, the method results in a two-term Sylvester equation with
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pentadiagonal matrices except for a few dense rows. Experiments indicate that the

eigenvalues of the matrices lie within disjoint intervals similar to those in section 2.3,

but this is not theoretically justified. However, in practice, we observe that applying

the ADI method to these Sylvester equations computes a solution in an optimal

number of operations, with accuracy and timings similar to the theoretically-justified

methods previously presented for Dirichlet problems.
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Chapter 3

The ultraspherical spectral element method†

3.1 Introduction

Traditional approaches for solving PDEs on meshed geometries include finite element

methods (FEMs) [93], discontinuous Galerkin (DG)methods [50], and spectral element

methods (SEMs) [134]. Each approach typically represents the solution of the PDE as a

piecewise polynomial, with continuity or jump conditions weakly or strongly imposed

between elements. Convergence is achieved by either refining the mesh (h-refinement)

or increasing the polynomial degree on the elements (p-refinement). In theory, super-

algebraic convergence can be observed—even for solutions with singularities—by

optimally selecting a refinement strategy (hp-adaptivity) [18]. However, hp-adaptivity
theory can require high polynomial degrees, which are rarely used in practice as

traditional methods can have prohibitive computational costs and numerical stability

issues in this regime.

In particular, constructing efficient solvers for traditional high-order nodal element

methods can be challenging. Direct solvers can become computationally intractable

even for relatively small polynomial degrees as nodal discretizations result in dense

linear algebra; in d dimensions, the computational complexity for a direct solver

naïvely scales as O(p3d). Iterative solvers may require an increasing number of

iterations as p increases because of the difficulties in designing robust preconditioners

in the high p regime [129]. Because of these challenges, traditional element methods

are typically restricted to low polynomial degrees, and h-refinement is generically

preferred over p-refinement irrespective of local error estimators [171]. Even when

hp-adaptivity theory—based on the regularity of the PDE solution—indicates that

high p should be used, this advice is often ignored due to the computational cost of

the high-p regime.

Much work has gone toward reducing the computational costs associated with

high-order element methods. For discretizations that possess tensor-product structure

(e.g., standard nodal bases on quadrilateral elements or certain bases on triangular

elements [155]), sum factorization [129] reduces the cost of operator assembly from

†
This chapter is a modified version of the following jointly authored publication: D. Fortunato,

N. Hale, and A. Townsend, The ultraspherical spectral element method, Jun 2020, https://arxiv.org/abs/

2006.08756.
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O(p3d) to O(p2d+1), and matrix-free evaluation reduces the cost of matrix-vector

multiplication from O(p2d) to O(pd+1) [3, Tab. 1]. Solvers for the resulting linear

systems are often based on iterative methods coupled with sufficient preconditioning.

Low-order FEM discretizations on a mesh constructed from the high-order SEM

nodes can be shown to be spectrally equivalent to the SEM discretizations [43], and

matrix-free preconditioners based on this equivalence can performwell when coupled

with a multigrid method using specialized smoothers [135]. Multigrid methods

applied to high-order DG discretizations can perform well if the discrete operators

are coarsened according to the flux formulation of the PDE [69]. Spectral element

multigrid methods have proven effective when applied to nodal discretizations of

Poisson’s equation in one dimension, though multigrid convergence factors can

weakly depend on both h and p [111, 144]. Modal discretizations for p-FEM based

on integrated Jacobi polynomials can yield sparse stiffness matrices that contain an

optimal number of nonzeros, but developing optimal solvers for such discretizations

remains a challenge [30]. Many open-source software libraries exist for high-order

element computation, including MFEM [3], Firedrake [142], Nektar++ [42,121], and

Nek5000 [9].

Though solvers for element methods are commonly based on preconditioned itera-

tive methods, fast direct solvers for high-order methods have become an active area of

research in recent years [114]. Direct solvers are robust, require no convergence analy-

sis or preconditioners based on problem parameters, and can be repeatedly applied to

update a solution cheaply in a design loop. The hierarchical Poincaré–Steklov (HPS)

scheme [15, 79, 80, 112–114] is a direct solver for multidomain spectral collocation,

based on a recursive domain decomposition approach similar to classical nested

dissection. The formulation hierarchically merges Dirichlet-to-Neumann operators

and results in an in-memory solution operator, which can be reapplied fast to multiple

righthand sides on static meshes. The ability to reuse computed solution operators

allows for efficient implicit time-stepping for parabolic problems [16,17]. The method

has been extended to handle mesh adaptivity [74], local geometry deformation [182],

three-dimensional problems [88], and boundary integral equations [78]. The HPS

scheme based on spectral collocation has an overall complexity of O(Np4 + N3/2) in
two dimensions, where N ≈ (p/h)2

is the total number of degrees of freedom, p is

the polynomial degree on each element, and h is the minimum mesh element size.

In this chapter, we take advantage of recent advances in sparse spectral methods to

propose an SEM in two dimensions with a computational complexity of

p4

h2︸︷︷︸
initialization stage

+
p3

h3︸︷︷︸
build stage

+
p3

h2 +
p2

h2 log
1
h2︸ ︷︷ ︸

solve stage

≈ p4

h2 +
p3

h3 ≈ Np2 + N3/2.

Specifically, we propose a variant of the HPS scheme that employs the ultraspherical

spectral method [125,163] instead of spectral collocation for element-wise discretiza-

tion. The method retains sparsity in the high-p regime by carefully selecting bases
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to be specific families of orthogonal polynomials and employing sparse recurrence

relations between them. The discretization is not nodal, but modal; that is, the

unknowns are not values on a grid, but coefficients in a polynomial expansion.

In this work, we are interested in solving linear PDEs on two-dimensional meshed

geometries with Dirichlet boundary conditions,
12

i.e.,

Lu(x, y) = f (x, y) in Ω,
u(x, y) = g(x, y) on ∂Ω.

(3.1.1)

Here, Ω is a domain in R2
, f and g are given functions defined on Ω and its boundary,

and L is a variable-coefficient, second-order, elliptic partial differential operator (PDO)

of the form

Lu = ∇ · (A(x, y)∇u) +∇ · (b(x, y)u) + c(x, y)u, (3.1.2)

with A(x, y) ∈ C2×2
, b(x, y) ∈ C2

, and c(x, y) ∈ C.

This chapter is structured as follows. In section 3.2, we review the ultraspherical

spectral method, a sparse and spectrally-accurate method for solving linear ODEs

and PDEs on rectangular domains, and discuss its application to quadrilateral

and triangular domains. In section 3.3, we extend this spectral method to the

non-overlapping domain decomposition setting, highlighting the differences from

traditional collocation-based patching approaches. We describe how the hierarchical

merging of Poincaré–Steklov operators efficiently performs domain decomposition

on meshes with many elements. In section 3.4, we present an implementation of

the ultraspherical SEM in the software package ultraSEM, and briefly describe its

syntax and design. In section 3.5, we present numerical results and applications of

the method.

3.2 Background material

3.2.1 The ultraspherical spectral method

First, we review the fundamental ideas in the ultraspherical spectral method [125],

which in one dimension solves linear ordinary differential equations (ODEs) with

variable coefficients of the form

M

∑
λ=0

aλ(x)
dλu
dxλ

= f (x), x ∈ [−1, 1], (3.2.1)

12
Robin boundary conditions can be converted to equivalent Dirichlet boundary conditions using

the Dirichlet-to-Neumann operators constructed by the HPS scheme, and so we focus on Dirichlet

boundary conditions throughout this work.
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along with general linear boundary conditions Bu = g ∈ CM
to ensure that there is a

unique solution. For an integer p, the method seeks to approximate the first p + 1
Chebyshev expansion coefficients {uj}

p
j=0 of the solution u, where

u(x) =
∞

∑
j=0

ujTj(x), x ∈ [−1, 1],

and Tj(x) = cos(j cos−1 x) is the degree-j Chebyshev polynomial of the first kind.

Classical spectral methods represent differentiation as a dense operator [32,168],

but the ultraspherical spectral method employs the “sparse” recurrence relations

dλTj

dxλ
=

{
2λ−1 j(λ− 1)! C(λ)

j−λ, j ≥ λ,

0, 0 ≤ j ≤ λ− 1,
(3.2.2)

where C(λ)
j is the degree-j ultraspherical polynomial of parameter λ > 0 [123, Sec.

18.3]. This results in a sparse representation of differentiation operators. In particular,

the differentiation operator for the λth derivative is given by

Dλ = 2λ−1(λ− 1)!


λ times︷ ︸︸ ︷

0 · · · 0 λ

λ + 1
λ + 2

. . .

 , λ ∈N \ {0}.

For λ ≥ 1, the matrix Dλ maps a vector of Chebyshev coefficients to a vector of C(λ)

coefficients of the λth derivative. For convenience, we use D0 to denote the identity

operator.

Since Dλ returns a vector of ultraspherical coefficients for λ ≥ 1, operators to

convert between the Chebyshev and ultraspherical bases are required. Let S0 be the

operator that converts a vector of Chebyshev coefficients to a vector of C(1)
coefficients,

and let Sλ, for λ ≥ 1, be the operator that converts a vector of C(λ)
coefficients to a

vector of C(λ+1)
coefficients. Using the recurrence relations [123, (18.9.7) & (18.9.9)]

Tj =


1
2

(
C(1)

j − C(1)
j−2

)
, j ≥ 2,

1
2C(1)

1 , j = 1,

C(1)
0 , j = 0,

C(λ)
j =


λ

λ+j

(
C(λ+1)

j − C(λ+1)
j−2

)
, j ≥ 2,

λ
λ+1C(λ+1)

1 , j = 1,

C(λ+1)
0 , j = 0,
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it can be shown that the conversion operators S0 and Sλ are sparse and given by [125]

S0 =



1 0 −1
2

1
2 0 −1

2

1
2 0

. . .

1
2

. . .

. . .


, Sλ =



1 0 − λ
λ+2

λ
λ+1 0 − λ

λ+3

λ
λ+2 0

. . .

λ
λ+2

. . .

. . .


, λ ≥ 1.

To represent multiplication by the variable coefficients aλ(x) in (3.2.1), multi-

plication operatorsMλ[aλ] for C(λ)
coefficients

13
can be explicitly constructed. If

aλ(x) is approximated by a degree-mλ polynomial, then the operator Mλ[aλ] is
mλ-banded [125].

Discretizing (3.2.1) using these operators to represent differentiation, conversion

between bases, and multiplication by variable coefficients results in a banded (p +
1)× (p + 1) linear system given by(

MM[aM]DM +
M−1

∑
λ=0
SM−1 · · · SλMλ[aλ]Dλ

)
u = SM−1 · · · S0 f, (3.2.3)

where u and f are vectors of Chebyshev coefficients of u and f , respectively. Note

that since the order-M differential operator in (3.2.3) maps the vector of Chebyshev

coefficients u to C(M)
coefficients, the vector of Chebyshev coefficients f must also be

converted to C(M)
coefficients. The bandwidth of the linear system in (3.2.3) scales

as O(maxλ mλ), independent of the polynomial order p. If the variable coefficients

aλ(x) can be approximated by polynomials such that mλ � p, then (3.2.3) is a sparse

linear system.

To impose the boundary constraints given by B, we must encode B in terms of its

action on a vector of Chebyshev coefficients. For Dirichlet boundary conditions on

[−1, 1], such action is given by

B =

(
T0(−1) T1(−1) · · · Tp(−1)
T0(1) T1(1) · · · Tp(1)

)
=

(
1 −1 · · · (−1)p

1 1 · · · 1

)
, (3.2.4)

because Bu ≈ (u(−1), u(1))T
. Neumann, Robin, and more general boundary con-

straints can be similarly encoded. To impose the M boundary conditionsBu = g on the

linear system (3.2.3), the ultraspherical spectral method uses boundary bordering [32],

wherein the last M rows of the linear system are replaced by dense rows that impose

constraints on the Chebyshev coefficients of the solution (e.g., (3.2.4) for Dirichlet

boundary conditions). The resulting (p + 1)× (p + 1) linear system has a distinctive

13
The multiplication operator for λ = 0,M0[a0], acts on a vector of Chebyshev coefficients.
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almost banded
14

structure and can be solved in O((maxλ mλ)
2p) operations using

the adaptive QR algorithm [125] or the Woodbury formula. Figure 3.1 (left) shows the

almost banded structure typical of the linear systems in the ultraspherical spectral

method.

The ultraspherical spectralmethod can be extended to solve PDEs in two dimensions

on rectangular domains [163]. For the PDE given in (3.1.1) and for a polynomial order

p, the method computes modes X ∈ C(p+1)×(p+1)
of the solution u(x, y) in a bivariate

tensor-product Chebyshev basis, such that

u(x, y) =
∞

∑
i=0

∞

∑
j=0

XijTi(y)Tj(x), (x, y) ∈ [−1, 1]2.

Discretization of the PDE is based on separable models of linear partial differential

operators. For example, the elliptic PDO L given by (3.1.2) can be decomposed into a

sum of tensor products of one-dimensional differential operators

L =
K

∑
j=1

(
Ly

j ⊗L
x
j

)
, (3.2.5)

where Ly
1, . . . ,Ly

K are operators associated with ODEs in y, Lx
1 , . . . ,Lx

K are operators

associated with ODEs in x. In (3.2.5), the tensor product operator ‘⊗’ is defined such

that if u(x, y) = v(y)w(x), then

(Ly ⊗Lx) u(x, y) = (Lyv(y)) (Lxw(x))

for some operators Ly
and Lx

. Such separable representations of PDOs can be auto-

matically computed [163]. The univariate differential operators Ly
1, . . . ,Ly

K,Lx
1 , . . . ,Lx

K
can each be discretized using the ultraspherical spectral method in one dimension,

and boundary conditions in x and y can be imposed on the rows and columns of

X, thus giving us a scheme for discretizing the PDE. The resulting linear system of

size (p + 1)2 × (p + 1)2
is almost block-banded with a bandwidth of O(p) and O(p)

dense rows, and can be solved inO(p4) operations. In special cases, e.g., where K = 1
or K = 2, further structure can be exploited to arrive at faster solvers [71, 163].

3.2.2 Spectral methods on quadrilaterals and triangles

Global spectral methods defined on rectangles can be used on other polygons through

coordinate transformation. Let Q
ref

= [−1, 1]2 be the reference square with vertices

given by (r0, s0) = (−1,−1), (r1, s1) = (1,−1), (r2, s2) = (1, 1), (r3, s3) = (−1, 1).
Denote by (r, s) the coordinates in reference space and by (x, y) the coordinates

in real space, and suppose we have a mapping from reference space to real space,

14
A matrix is almost banded if it is banded except for a small number of columns or rows.
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Figure 3.1: (Left) Typical structure of the almost banded matrices constructed by the ultraspherical spectral
method, i.e., banded matrices except for a small number of dense rows. In one dimension, ODEs are discretized
as almost banded (p + 1)× (p + 1) linear systems with bandwidth independent of p and O(1) dense rows;
such systems can be solved in O(p) operations. In two dimensions on [−1, 1]2, PDEs are discretized as almost
block-banded (p + 1)2× (p + 1)2 linear systems, with a bandwidth ofO(p) andO(p) dense rows; such systems
can be solved in O(p4) operations. (Center) In two dimensions on a quadrilateral, PDEs are transformed
to [−1, 1]2 and then discretized. When Jacobian factors are kept as rational functions (see subsection 3.2.2),
the discrete differential operator has a large bandwidth. (Right) By scaling the transformed PDE twice by the
determinant of the Jacobian, the discrete differential operator remains sparse.

(r, s) 7→ (x, y). To apply a global spectral method on Q
ref

to a PDE defined in real

space, the differential operator L and righthand side f (x, y) are transformed into

reference space. The coordinate transformation alters the differential operator via the

chain rule. For a function u(r, s) defined on Q
ref
, first- and second-order derivatives

in x and y are given by

ux = rxur + sxus,
uy = ryur + syus,

uxx = (rx)
2urr + 2rxsxurs + (sx)

2uss + rxxur + sxxus,
uxy = rxryurr + (rxsy + rysx)urs + sxsyuss + rxyur + sxyus,

uyy = (ry)
2urr + 2rysyurs + (sy)

2uss + ryyur + syyus,

where the Jacobian factors rx, rxx, . . . depend on the coordinate mapping. In this work,

we are interested in mappings from Q
ref

to quadrilaterals or triangles.

For a quadrilateral domainQ with vertices (x0, y0), . . . , (x3, y3), a bilinear mapping

from (r, s) ∈ Q
ref

to (x, y) ∈ Q is given by[
r
s

]
7→
[

ax
0 + ax

1r + ax
2s + ax

3rs
ay

0 + ay
1r + ay

2s + ay
3rs

]
=

[
x
y

]
,

where the coefficients ax
0 , . . . , ax

3 and ay
0, . . . , ay

3 satisfy the linear system
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
1 r0 s0 r0s0
1 r1 s1 r1s1
1 r2 s2 r2s2
1 r3 s3 r3s3




ax
0 ay

0
ax

1 ay
1

ax
2 ay

2
ax

3 ay
3

 =


x0 y0
x1 y1
x2 y2
x3 y3

 .

While the mapping from (r, s) to (x, y) is bilinear, the mapping from (x, y) to (r, s) is
more complicated and in particular is not polynomial, and so we would like to avoid

directly computing the inverse maps r(x, y) and s(x, y). Therefore, to compute the

first-order Jacobian factors rx, sx, ry, and sy, we apply the inverse function theorem

to the Jacobian matrix Jrs = ∂(r, s)/∂(x, y), which states that Jrs =
(

Jxy
)−1

with

Jxy = ∂(x, y)/∂(r, s). Writing out the Jacobians explicitly, we obtain the following

formulae for the first-order factors rx, sx, ry, and sy:[
rx ry
sx sy

]
=

[
xr xs
yr ys

]−1

=
1

det(Jxy)

[
ys −xs
−yr xr

]
,

where det(Jxy) = xrys − xsyr. Applying the chain rule to these definitions yields

formulae for the second-order factors rxx, rxy, ryy, sxx, sxy, and syy.

However, note that the Jacobian factors are rational functions, due to factors of

det(Jxy) and det(Jxy)2
in the denominators of the first- and second-order terms, respec-

tively. Thus, the coordinate transformation fromQ toQ
ref

introduces rational variable

coefficients into the differential operator, and the discretization of the transformed

operator by the ultraspherical spectral method results in a linear system with large

bandwidth (see Figure 3.1 (center)). To recover sparsity, we scale the transformed

differential operator Lrs and righthand side f (r, s) by the factor det(Jxy)2
[180], and

discretize the scaled PDE(
det(Jxy)

2Lrs

)
︸ ︷︷ ︸

L̂rs

u(r, s) = det(Jxy)
2 f (r, s)︸ ︷︷ ︸

f̂

.

As all Jacobian factors can bewrittenwith denominator det(Jxy)2
, this scaling turns the

rational variable coefficients induced by the transformation into polynomial variable

coefficients of degree ≤ 2 (see Figure 3.1 (right)). Thus, PDEs on Q with degree-m
variable coefficients are transformed into PDEs on Q

ref
with degree-(m + 2) variable

coefficients.

For a triangular domain T , the Duffy transformation [59,154] may be used to define

a mapping from Q
ref

to T by collapsing one side of Q
ref

to a point. Let T
ref

be the

reference triangle with vertices (x0, y0) = (0, 0), (x1, y1) = (1, 0), and (x2, y2) = (0, 1).
A mapping from (r, s) ∈ Q

ref
to (x, y) ∈ T

ref
can be defined by[

r
s

]
7→
[

1
4(1 + r)(1− s)

1
2(1− s)

]
=

[
x
y

]
,
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which maps the line segment between (−1, 1) and (1, 1) in Q
ref

to the point (0, 1) in
T
ref
. The inverse of this transformation, mapping from (x, y) ∈ T

ref
to (r, s) ∈ Q

ref
,

possesses a singularity at the point (0, 1), i.e.,[
x
y

]
7→
[

2x/(1− y)− 1
2y− 1

]
=

[
r
s

]
.

If discretized directly, Jacobian factors based on this transformation introduce singular

variable coefficients into the differential operator when the operator is transformed to

T
ref
. However, the singularity induced by the Duffy transformation may be removed

by scaling the PDE by powers of 1− y. For a general triangular domain T with

vertices (x0, y0), . . . , (x2, y2), the Duffy transformation may be composed with an

affine transformation of the form[
x
y

]
7→
[

x0 + (x1 − x0) x + (x2 − x0) y
y0 + (y1 − y0) x + (y2 − y0) y

]

to yield a mapping from Q
ref

to T .
We focus our attention on straight-sided quadrilateral elements in the remainder

of this work. However, the algorithms presented below can be applied to triangular

elements through simple modifications. The ultraSEM software supports both

triangular and quadrilateral elements.

3.3 The ultraspherical spectral element method

Wenowdescribe how to adapt the ultraspherical spectralmethod into an SEM, focusing

on key implementation aspects. Our method is based on the hierarchical Poincaré–

Steklov scheme, an efficient non-overlapping domain decomposition approach [15, 79,

80, 112–114]. We employ a variant of the HPS scheme to handle irregular, non-tensor-

product meshes (see subsection 3.3.4). Broadly, our method is the following:

1. The method takes as input a second-order elliptic PDO L, a righthand side f ,
Dirichlet data g, and a mesh with elements {Ei}

n
elem

i=1 .

2. On each element, two local operators are constructed: (i) a solution operator,

which computes the local solution to thePDEon the elementwhengivenDirichlet

data, and (ii) a Dirichlet-to-Neumann operator, which computes the outward

flux of the local solution when given Dirichlet data (see subsection 3.3.3.1).

3. Local elemental operators are merged pairwise in a hierarchical fashion, yielding

solution operators and Dirichlet-to-Neumann operators, which act on the inter-

faces between elements or groups of elements. Merging continues until a single

global solution operator is computed for the entire mesh (see subsection 3.3.3.2).
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4. The given Dirichlet data g is passed in at the top level. Solution operators are

applied down the tree, providing the solution at unknown interfaces between

elements (see subsection 3.3.3.3).

5. Once the solution is known at all the interfaces, local solution operators are

applied on each element to determine the interior solution over the entire mesh.

Themethod lends itself toparallelization. Specifically, steps 2 and5 canbeperformed

independently on each element as the computations involved are entirely decoupled.

Moreover, step 2 is often the bottleneck when p is large, and so significant speedups

may be gained if parallelism is exploited (see subsection 3.3.4). The hierarchical steps

3 and 4 may also be parallelized, as the operations taking place on two branches

in the hierarchy are decoupled until the two branches are merged. Thus, a careful,

load-balanced strategy for parallelizing across branches in the hierarchy may lead to

further speedups.

3.3.1 Domain decomposition for modal discretizations

Adapting a domain decomposition approach such as the HPS scheme—originally

formulated around a spectral collocation method [112,113]—to a modal discretization

such as the ultraspherical spectral method gives rise to a few subtleties. In the nodal

setting, values along interfaces are inherently shared between elements, allowing for

an intuitive way to separate the nodes in each element into “interior” and “interface”

degrees of freedom and solve for them accordingly (see Figure 3.2a). Cross point

conditions (e.g., at a point where the corners of four quadrilaterals meet) can then be

avoided by removing the degrees of freedom located at cross points [16]. In the modal

setting, on the other hand, the coefficients in a bivariate Chebyshev expansion are not

spatially localized, and therefore do not intuitively separate into such categories. To

regain a decoupling for Chebyshev coefficients, it is helpful to think about bivariate

functions on each element communicating not with each other directly, but with

univariate functions on each interface (see Figure 3.2b). Using a modal discretization

for these bivariate interior functions and univariate interface functions then allows

Chebyshev coefficients to be separated as before. Cross point conditions must

then be imposed directly for the resulting linear systems to be nonsingular (see

subsection 3.3.3.2).

An alternative remedy to localize modal discretizations is to use a basis that has

intrinsic spatial separation between interior and interface, such as a basis consisting

of bubble functions (functions that are zero on the edges of an element) and edge

functions (functions that are nonzero on the edges of an element) [154]. However,

such a basis may not yield a sparse discretization of the PDE. We choose to use the

ultraspherical basis to obtain sparse linear algebra, which affords our method a lower

computational complexity with respect to p.
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(a) Nodal discretization (b) Modal discretization

Figure 3.2: Two interpretations of non-overlapping domain decomposition for nodal and modal discretizations,
with interface data (red) and interior data (blue). (a) In a nodal discretization, neighboring elements communicate
directly through degrees of freedom at nodes, which can be partitioned into shared interface nodes and local
interior nodes. (b) In a modal discretization, neighboring elements communicate indirectly through unshared
interface functions, allowing for coefficients in a modal discretization to be spatially separated.

3.3.2 Model problem: two “glued” squares

To begin, we consider the simple domain decomposition setting of two square-shaped

elements that are “glued” together. That is, we wish to use the ultraspherical spectral

method to solve the patching problem
15

∇2u1 = f1 in E1,

∇2u2 = f2 in E2,
u1 = g1 on ∂E1 ∩ ∂Ω,
u2 = g2 on ∂E2 ∩ ∂Ω,
u1 = u2 on Γ,

∂u1
∂n1

+ ∂u2
∂n2

= 0 on Γ,

(3.3.1)

where E is a mesh of the domain Ω = [−2, 2]× [−1, 1] with elements E1 = [−2, 0]×
[−1, 1] and E2 = [0, 2]× [−1, 1], Γ is the interface between the two elements, f and

g are given functions, and fi = f (Ei) for any function f . This model problem of a

pairwise merge serves as a building block in the HPS scheme. The problem setup is

depicted in Figure 3.3.

The patching problem (3.3.1) couples two three-sided Dirichlet problems via

continuity conditions across the interface Γ. Equivalently, (3.3.1) can be regarded as

two decoupled, four-sided Dirichlet problems when given a suitable piece of Dirichlet

data along Γ. That is, there exists an interface function ϕ such that (3.3.1) is equivalent

to

∇2u1 = f1 in E1, ∇2u2 = f2 in E2,
u1 = g1 on ∂E1 ∩ ∂Ω, u2 = g2 on ∂E2 ∩ ∂Ω,
u1 = ϕ on Γ, u2 = ϕ on Γ.

(3.3.2)

15
It is worth noting that this formulation is equivalent to the global problem ∇2u = f in Ω, u = g

on ∂Ω. This holds for any second-order linear elliptic boundary value problem [43].
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Γ

∇2u1 = f1 ∇2u2 = f2

u1 = u2
∂u1
∂n1

+ ∂u2
∂n2

= 0

n1n2

u1 = g1 u2 = g2

Figure 3.3: The canonical problem setup for two “glued” squares.

To determine this unknown interface function ϕ, we aim to build a direct solver—an

operator SΓ such that ϕ = SΓ g—using ingredients from local operators on each

element. In particular, we construct local direct solvers on E1 and E2, and then use

pieces of these operators to construct the interfacial solution operator SΓ. Once the

interface function ϕ is found, the two subproblems in (3.3.2) decouple and can be

solved independently by applying local direct solvers on E1 and E2. By building a direct

solver for the global interface problem based on direct solvers for the subproblems in

(3.3.2), the generalization to multiple elements follows naturally.

3.3.2.1 Constructing local operators

To construct a direct solver for (3.3.2), we first build operators that encode how

to solve the PDE locally on elements E1 and E2. Such operators, called solution

operators, take in Dirichlet data and return the corresponding solution to the PDE on

an element. For a quadrilateral domain, the solution operator takes in four univariate

functions—representing four sides of Dirichlet data—and returns a bivariate function

that satisfies the PDE (see Figure 3.4a).

We use the ultraspherical spectral method for solving PDEs on quadrilaterals

(see subsection 3.2.2). If on each element we employ a (p + 1)× (p + 1) coefficient

discretization for the solution so that the solution is at most a degree-(p, p) polynomial,

then the solution operator SE ∈ C(p+1)2×4(p+1)+1
on element E is a dense matrix.

For a column vector c ∈ C4(p+1)
and scalar α ∈ C, the product SE [ c

α ] ∈ C(p+1)2

represents the (p + 1)× (p + 1) Chebyshev coefficients of the solution to the PDE on

E with Dirichlet data c and righthand side α f .16 Here, c = [c1, c2, c3, c4]
T
represents

the Chebyshev coefficients of four univariate functions of Dirichlet data on the left,

right, bottom, and top of E , respectively, each discretized with p + 1 coefficients. For

16
In practice, we always take α = 1.
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7→

(a) Solution operator

7→

(b) Dirichlet-to-Neumann operator

Figure 3.4: A visualization of the local operators computed for each element. (a) The solution operator on a
quadrilateral takes in four univariate functions of Dirichlet data and returns a bivariate function that solves the
PDE using the given boundary conditions. (b) The Dirichlet-to-Neumann operator on a quadrilateral takes in
four univariate functions of Dirichlet data and returns four univariate functions of Neumann data, representing
the normal derivative of the solution to the PDE on the four sides.

example, on the left side, the coefficients c1 ∈ Cp+1
define the degree-p boundary

function h1(y) as

h1(y) =
p

∑
j=0

(c1)jTj(y).

Similarly, c2, c3, and c4 define functions on the other three sides.

The solution operator on E can be decomposed into four operators S1
E , S2
E , S3
E , S4
E ∈

C(p+1)2×(p+1)
that account for the homogeneous part of the solution and one column

vector Srhs

E ∈ C(p+1)2×1
that accounts for the particular part of the solution. That is,

SE =

[
S1
E S2

E S3
E S4

E Srhs

E

]
,

where the vector Srhs

E is defined by

Srhs

E = vec(X), u
rhs

(x, y) =
p

∑
i=0

p

∑
j=0

XijTi(y)Tj(x),

and vec(·) is the column-wise vectorization operator. Here, u
rhs

satisfies the PDE on

E with homogeneous boundary conditions, i.e.,

∇2u
rhs

= f |E , u
rhs
|∂E = 0.

The products Si
Eci represent the (p + 1) × (p + 1) Chebyshev coefficients of the

approximate solution to the homogeneous problem (i.e., f = 0) with Dirichlet data

on side i given by the Chebyshev coefficients ci and zero Dirichlet data on the other
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three sides. We construct the matrices Si
E column-by-column. To construct the jth

column of Si
E , we set the jth Dirichlet coefficient to one and the rest to zero, i.e.,

(ci)k =

{
1, if k = j,
0, otherwise,

(3.3.3)

for 0 ≤ k ≤ p. We wish to solve the PDE using this Dirichlet data for each 0 ≤ j ≤ p
to obtain the (p + 1)× (p + 1) coefficients of the solution, which are reshaped and

placed as a column into Si
E . That is, the jth column of the solution operator for the ith

side of the element E , i.e., (Si
E ):,j, is constructed as

(Si
E ):,j = vec(X), vj(x, y) =

p

∑
k=0

p

∑
`=0

Xk`Tk(y)T`(x),

where vj approximately satisfies the following homogeneous PDE:

∇2vj = 0, vj|∂E =
{

Tj, on side i,
0, otherwise.

Unfortunately, the Dirichlet data used in this construction process may have

discontinuities at the corners of the domain, leading to incompatible boundary

conditions. To ensure compatibility is satisfied, we orthogonally project each function

ci onto the space of functions that are continuous at the corners before solving the

PDE. The compatibility conditions at the four corners of the quadrilateral can be

encoded into a matrix B ∈ C4×4(p+1)
given by

B =


B−1 0 −B−1 0
B+1 0 0 −B−1

0 B−1 −B+1 0
0 B+1 0 −B+1


} bottom left corner

} top left corner

} bottom right corner

} top right corner

with

B±1 =
[
T0(±1) T1(±1) · · · Tp(±1)

]
,

where Tj(±1) = (±1)j
. The matrix B±1 is an evaluation operator at the endpoints of

the interval [−1, 1]. So, for the functions hi defined above, B±1ci = hi(±1). A given

piece of boundary data defined by the coefficients c = [c1, c2, c3, c4] is compatible at

the corners if and only if Bc = 0. To project the boundary data so that it satisfies

compatibility, we build a basis for null(B), which is of rank 4(p + 1)− 4. Taking

the singular value decomposition B = UΣV∗ and letting Ṽ be the last 4(p + 1)− 4
columns of V, we construct a projection matrix P = ṼṼ∗. Since this projection

matrix depends only on p, it can be precomputed and stored. The product c̃ = Pc
orthogonally projects the functions defined by c1, c2, c3, and c4 onto the space of
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compatible boundary conditions, so that c̃1, c̃2, c̃3, and c̃4 are continuous at the four

corners of the quadrilateral. We apply this projection during the construction process

to the Dirichlet data c in (3.3.3) to obtain compatible Dirichlet data c̃. It is this Dirichlet

data that we use to construct the columns of the solution operator Si
E .

Continuity conditions between elements are communicated locally via the Dirichlet-

to-Neumann operator, or Poincaré–Steklov operator. The Dirichlet-to-Neumann

operator on an element E , denoted by ΣE , computes the local solution to the PDE on

E when given Dirichlet data, and then evaluates the outward fluxes of the solution

on each side of the element (see Figure 3.4b). Because the local solution is computed

as an intermediate step in its calculation, the Dirichlet-to-Neumann operator can be

written as a product of the normal derivative operator and the solution operator. That

is, ΣE = DESE , where DE computes the outward fluxes of a bivariate function on

each side of the element E when given its (p + 1)2
Chebyshev coefficients. On the

reference square [−1, 1]2, D[−1,1]2 ∈ C4(p+1)×(p+1)2
is given by

D[−1,1]2 =


I ⊗ D−1
I ⊗ D+1
D−1 ⊗ I
D+1 ⊗ I


} left normal derivative

} right normal derivative

} bottom normal derivative

} top normal derivative

where ‘⊗’ denotes the Kronecker product operator for matrices, I is the (p + 1)× (p +
1) identity matrix, and

D±1 = ±
[

T′0(±1) T′1(±1) · · · T′p(±1)
]

, T′j (±1) = (±1)j j2.

On quadrilaterals and triangles, the normal derivative operator is transformed

according to the Jacobian factors described in subsection 3.2.2. Hence, the Dirichlet-

to-Neumann operator ΣE ∈ C4(p+1)×(4(p+1)+1)
is a dense matrix. The product

ΣE [ c
α ] ∈ C4(p+1)

represents the four normal derivatives of the solution to the PDE on

the element E with Dirichlet data c and righthand side α f , each discretized with p + 1
Chebyshev coefficients. In the context of the model problem (3.3.2), the Dirichlet-to-

Neumann operators ΣE1 and ΣE2 on the elements E1 and E2, respectively, are merged

to make the interfacial solution operator SΓ, allowing for the direct solution of the

unknown interface function ϕ.

3.3.2.2 Merging two operators

With local operators constructed on each element E1 and E2, we now aim to build a

global solution operator, SΓ, from the local operators SE1 , SE2 , ΣE1 , and ΣE2 , to solve

for the unknown interface function ϕ. Mathematically, this decomposition mimics the

classical Schur complement method for domain decomposition, keeping the physical

interpretation for modal discretizations from subsection 3.3.1 in mind.
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For elements E1 and E2, let Γ1 and Γ2 denote the indices of the local Dirichlet data

corresponding to the shared boundary Γ. For E1, since the shared interface Γ is

on the right side and the boundary data c = [c1, c2, c3, c4] is ordered as left, right,

bottom, and top, the indices corresponding to the p + 1 Chebyshev coefficients of

the right-side Dirichlet data c2 are given by the set Γ1 = {(p + 1) + 1, . . . , 2(p + 1)}.
Similarly, since the interface Γ is on the left side of E2, the indices of the local Dirichlet

data on the shared boundary of E2 are given by Γ2 = {1, . . . , p + 1}. Finally, denote
by L1 and L2 the sets containing the indices corresponding to the coefficients of the

unshared Dirichlet data on each element, so that L1 = {1, . . . , 4(p + 1)} \ Γ1 and

L2 = {1, . . . , 4(p + 1)} \ Γ2.

With these indices defined for E1 and E2 based on interaction with the Dirichlet

data on Γ, the rows and columns of the local operators ΣE1 and ΣE2 can be partitioned

into “interior” and “interface” blocks. The pieces of ΣE1 and ΣE2 that affect the shared

interface naturally separate, and a Schur complement may be performed to write

down the following (p + 1)× (p + 1) linear system for the solution operator on the

interface:

−
(

ΣΓ1,Γ1
E1

+ ΣΓ2,Γ2
E2

)
SΓ =

[
ΣΓ1,L1
E1

ΣΓ2,L2
E2

ΣΓ1,end
E1

+ ΣΓ2,end
E2

]
, (3.3.4)

where the last column of the righthand side of (3.3.4) encodes the contribution from the

particular solution. Here, “end” denotes the index of the last column of a matrix. The

linear system in (3.3.4) has a clear interpretation: the matrix ΣΓ1,Γ1
E1

+ ΣΓ2,Γ2
E2

computes

the jump in the normal derivative across the shared interface Γ and enforces this jump

to be offset by the contributions from the unshared sides and particular solution,

resulting in a discrete analogue of the original continuity condition in (3.3.1). As

before, the merged solution operator SΓ ∈ C(p+1)×(6(p+1)+1)
is a dense matrix. For

a column vector c ∈ C6(p+1)
and scalar α ∈ C, the product SΓ [

c
α ] ∈ Cp+1

represents

the p + 1 Chebyshev coefficients of the solution to the PDE on Γ with Dirichlet data

c = [c1, . . . , c6]
T
and righthand side α f , where now the Dirichlet data c is specified on

the six sides of the merged domain Ω.

The Schur complement also allows us to write down the Dirichlet-to-Neumann

operator for themerged domain. Using the new solution operator SΓ, we can construct

a new Dirichlet-to-Neumann operator on Ω as

ΣΩ =

 ΣΓ1,L1
E1

0 ΣL1,end
E1

0 ΣΓ2,L2
E2

ΣL2,end
E2

+

 ΣL1,Γ1
E1

ΣL2,Γ2
E2

 SΓ, (3.3.5)

where ΣΩ ∈ C6(p+1)×(6(p+1)+1)
. The vector ΣΩ [ c

α ] represents normal derivatives on

the six sides of Ω of the solution to the PDE on Ω with Dirichlet data c and righthand

side α f , each discretized with p + 1 Chebyshev coefficients.
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3.3.2.3 Computing the solution

We now have all the ingredients we need to compute the solution to (3.3.1). We begin

by converting the given boundary functions, g1 and g2, into Chebyshev coefficients.

On each of the three sides of E1 and E2 where g1 and g2 are known, we construct the

degree-p Chebyshev approximant to the boundary data and compile the coefficients

into vectors g1 and g2 of length 3(p + 1). Next, to solve for the interface function ϕ

that makes (3.3.2) equivalent to (3.3.1), we simply compute the matrix-vector product

SΓ
[ g

1

]
, where g = [g1, g2]

T
, which yields the p + 1 Chebyshev coefficients of ϕ. With

the Dirichlet data now known on all four sides of each of the elements E1 and E2,

the local solution operators SE1 and SE2 can finally be applied. Defining vectors ĝi

such that ĝ Γi
i = ϕ and ĝ Li

i = gi for i = 1, 2, the matrix-vector products SE1

[
ĝ1
1

]
and SE2

[
ĝ2
1

]
contain the (p + 1) × (p + 1) coefficients of the solutions u1 and u2,

respectively, satisfying (3.3.1).

3.3.3 The hierarchical scheme

At the end of merge process for the model problem of two “glued” squares, we are left

with two operators acting on Ω: (1) a solution operator, SΓ, to solve for the unknown

interface inside Ω, and (2) a Dirichlet-to-Neumann operator, ΣΩ, to map boundary

data to outward fluxes on Ω. These operators encode everything we need to know to

solve the PDE on Ω. In effect, Ω is now no different from the original elements E1 or

E2, and so it can be treated as just another element, ready to be merged again with

a new domain. After another merge, we are once again in the same situation, with

access to local operators that allow us to treat the merged domain as a black box. This

is the hierarchical Poincaré–Steklov scheme.

3.3.3.1 Initialization stage

For a mesh E = {Ei}
n
elem

i=1 of a domain Ω, the scheme begins with an initialization

stage, wherein local solution operators SEi and Dirichlet-to-Neumann operators ΣEi

are constructed on each element Ei according to subsection 3.3.2.1. The initialization

process is outlined in Algorithm 3.3.1. As the operations performed in the initalization

stage are local to each element, Algorithm 3.3.1 can be parallelized across elements.

3.3.3.2 Build stage

Once local operators have been computed for each element, the scheme enters the

build stage, where a hierarchy of merged operators is constructed in an upward pass.

Given a set of indices I that define a sequence of pairwise merges between elements,

operators are merged as in (3.3.4) and (3.3.5) in the order I until the entire mesh has

been merged into one large conglomerate. Along the way, merged elements store

their newly computed solution operators and Dirichlet-to-Neumann operators. The
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Algorithm 3.3.1 Initialization stage: initialize(E ,L, f )

Input: Mesh E = {Ei}n
elem

i=1 , partial differential operator L, righthand side f
Output: Solution operators for every element, {SEi}

n
elem

i=1
1: for each element Ei in mesh do
2: Transform (L, f ) 7→ (L̂, f̂ ) into reference space (see subsection 3.2.2).

3: Discretize L̂ and f̂ using the ultraspherical spectral method.

4: Construct the solution operator SEi (see subsection 3.3.2.1).

5: Construct the Dirichlet-to-Neumann operator ΣEi := DEi SEi

(see subsection 3.3.2.1).

build stage ends with a solution operator that acts on the entire mesh, taking in

Dirichlet data on every boundary of Ω and returning the solution to the PDE along

the penultimate merged interface. The build stage is outlined in Algorithm 3.3.2.

When the mesh contains cross points (i.e., points in the interior of the mesh where

corners of multiple elements meet), the linear system defining the solution operator,

−
(

ΣΓi,Γi
Ei

+ Σ
Γj,Γj
Ej

)
SΓij =

[
ΣΓi,Li
Ei

Σ
Γj,Lj
Ej

ΣΓi,end
Ei

+ Σ
Γj,end
Ej

]
, (3.3.6)

may be rank deficient, as a continuity condition on the sum of the normal fluxes

around the cross point has not been imposed [43]. Rather than imposing this condition

directly, we solve the rank-deficient system by finding the minimum-norm solution to

(3.3.6) in the least-squares sense [73].

Algorithm 3.3.2 Build stage (upward pass): build(E , ΣE , I)
Input: Mesh E = {Ei}n

elem

i=1 , local operators ΣE = {ΣEi}
n
elem

i=1 , merge indices I
Output: Solution operators for every merge, {SΓij}(i,j)∈I
1: for each pair in (i, j) ∈ I do
2: Define the merged domain Eij := Ei ∪ Ej.

3: Define the shared interface Γij := Ei ∩ Ej.

4: Define indices Γi, Γj for the shared boundary Γij on Ei, Ej.

5: Define indices Li := Γi, Lj := Γj for the unshared boundaries on Ei, Ej.

6: Solve the linear system

−
(

ΣΓi ,Γi
Ei

+ Σ
Γj,Γj
Ej

)
SΓij =

[
ΣΓi ,Li
Ei

Σ
Γj,Lj
Ej

ΣΓi ,end
Ei

+Σ
Γj,end
Ej

]
for the merged solution operator SΓij .

7: Define the merged Dirichlet-to-Neumann operator,

ΣEij :=

 ΣΓi ,Li
Ei

0 ΣLi ,end
Ei

0 Σ
Γj,Lj
Ej

Σ
Lj,end
Ej

+

 ΣLi ,Γi
Ei

Σ
Lj,Γj
Ej

 SΓij .

8: return {SΓij}(i,j)∈I
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3.3.3.3 Solve stage

The final stage of the scheme is the solve stage, which uses the merged solution

operators to recover the unknown interface data in a downward pass through the

hierarchy. Beginning at the top of the hierarchy, the solution operator acting on

the entire mesh is applied to the known Dirichlet data g, returning the Chebyshev

coefficients of the solution on the top-levelmerged interface. These coefficients are then

used as Dirichlet data on the next level, where solution operators are again applied to

compute the unknown interface data on subdomains. Finally, at the bottom level of the

hierarchy—where the solution is now known at each interface between elements—the

local solution operators SEi are applied to compute the bivariate solution in the interior

of each element Ei. The solve stage is outlined in Algorithm 3.3.3.

The solve stage may be executed multiple times using different boundary data

without recomputing the operators constructed in the initialization and build stages.

The stored operators may also be efficiently updated to solve (3.1.1) with a different

righthand side. Recall that the last column of every solution operator and Dirichlet-

to-Neumann operator in the hierarchy corresponds to the contribution from the

particular solution. Using a new righthand side, an updated particular solution can

be constructed on each element Ei as in subsection 3.3.2.1, replacing the last columns

of SEi and ΣEi . A modified build stage may be then be executed, where the last column

of each interfacial solution and Dirichlet-to-Neumann operator is updated by solving

the linear system (3.3.6) in an upward pass.

Algorithm 3.3.3 Solve stage (downward pass): solve(E , g)
Input: Element (or merged element) E , Dirichlet data g
Output: Solutions {ui}n

elem

i=1
1: if E is the entire domain then
2: Get all boundary faces (∂E)i.

3: Evaluate Dirichlet data gi := g((∂E)i) and convert to Chebyshev coefficients.

4: if E is a leaf then
5: Compute the local solution u := SE

[ g
1

]
.

6: return u
7: else
8: Look up the elements Ei, Ej that were merged to make E .
9: Define the shared interface Γij := Ei ∩ Ej.

10: Recover the missing interface data ϕ := SΓij

[ g
1

]
.

11: Define vectors ĝi, ĝj such that ĝ Γi
i = ϕ, ĝ Li

i = gi and ĝ
Γj
j = ϕ, ĝ

Lj
j = gj.

12: Compute the solution on Ei, {ui} := solve(Ei, ĝi).
13: Compute the solution on Ej, {uj} := solve(Ej, ĝj).
14: return {ui} ∪ {uj}
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3.3.4 Computational complexity

We now determine the computational complexity of the initialization, build, and solve

stages in terms of the number of degrees of freedom, N ≈ (p/h)2
, where h is the

minimummesh size and p is the polynomial order. Here, we assume that the number

of elements in the mesh, n
elem

, scales as O(1/h2), which is valid for a mesh that is

approximately uniformly refined. For a mesh that is adaptively refined, the number

of elements is typically much less than this estimate.

We begin with the initialization stage. On each element Ei, we approximate the

solution as a degree-(p, p) polynomial using (p + 1)2
degrees of freedom. After

transforming the PDE into the local coordinate system of the element, we discretize L̂
and f̂ using the ultraspherical spectral method. The bivariate Chebyshev coefficients

of f̂ can be computed inO(p2 log p) operations via a discrete cosine transform [169]. A

separable representation of L̂ can be computed inO(p3) operations using the singular

value decomposition, and differentiation, conversion, and multiplication matrices can

be constructed for each separable piece in O(p) operations. The (p + 1)2 × (p + 1)2

discrete PDO can then be assembled using Kronecker products in O(p4) operations.
The discrete PDO L is almost block-banded, with a bandwidth of O(p) and O(p)
dense rows. To compute the solution operator SEi , we must solve a linear system

with O(p) righthand sides. That is, we must solve a system of the form LX = B,
where L is O(p2) × O(p2) and B is O(p2) × O(p). The almost-banded matrix L
may be written as the sum of an O(p)-banded matrix A and a rank-O(p) correction,
L = A + UCVT

, where U and V are O(p2)×O(p) and C is O(p)×O(p). Using the

Woodbury formula, the solution to LX = B becomes

X = L−1B =
(

A + UCVT
)−1

B =

(
I − A−1U

(
C−1 + VT A−1U

)−1
VT
)

A−1B.

The banded matrix A can be inverted in O(p3) operations and its inverse applied to

O(p) righthand sides inO(p4) operations. Thematrix C−1 +VT A−1U isO(p)×O(p)
and so its inverse can be applied to O(p) righthand sides in O(p3) operations.

Therefore, the solution operator SEi on an element can be constructed in O(p4)
operations. The Dirichlet-to-Neumann operator ΣEi can be computed as a matrix

product in O(p4) operations. As these operators are computed once for each element,

the overall cost of the initialization stage scales as

p4

h2 ≈ Np2.

The cost of the build and solve stages depends on the merge scheme defined by

the indices I . If the mesh E = {Ei}
n
elem

i=1 is approximately tensor-product, the merge

indices I can be defined so that the hierarchy is approximately a binary tree (i.e., a

binary tree with O(1) additional merges). If the mesh is unstructured, a hierarchical

partitioning of the mesh may be computed by conversion to a graph partitioning
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problem [99]. The partitioning should be as balanced as possible, so that the indices

I define a balanced tree. If the user specifies merge indices that correspond to an

unbalanced tree, then the tree may be automatically rebalanced. We assume that the

merge indices I have been given so that the hierarchy in the build and solve stages

approximately forms a binary tree with O(log n
elem

) levels.
Let level ` = 0 denote the bottom level of the hierarchy, where no elements have

been merged. For a merge between Ei and Ej on level ` of the build stage, the solution

operator SΓij is computed by solving the linear system (3.3.6). The agglomerates Ei and

Ej each containO(2`)mesh elements, with the interface between them, Γij, containing

O(2`/2) boundaries. Hence, the linear system in (3.3.6) is O(2`/2 p)×O(2`/2p) and
can be solved in O((2`/2p)3) operations. As level ` has O(2−`n

elem
) elements, the

cost of processing all merges on level ` scales as(
2−`n

elem

)
·
(

2`/2 p
)3

= n
elem

2`/2p3.

The total cost for the build stage then scales as

p3n
elem

O(log n
elem

)

∑
`=0

2`/2 ≈ p3(n
elem

)3/2 ≈ p3

h3 ≈ N3/2

as N → ∞.

At level ` > 0 of the solve stage, the unknown interface data is computed via amatrix-

vector multiply with an O(2`/2p) × O(2`/2 p) matrix. As level ` has O(2−`n
elem

)
elements, the cost of computing the solution on all interfaces scales as(

2−`n
elem

)
·
(

2`/2p
)2

= p2n
elem

.

The total cost for all levels ` > 0 is then

O(log n
elem

)

∑
`=1

p2n
elem

≈ p2n
elem

log n
elem

.

At the bottom level, ` = 0, the solution is computed on each element through matrix-

vector multiplication with local solution operators of size (p + 1)2 × (4(p + 1) + 1),
which requires O(p3) operations. Therefore, the total cost for the solve stage scales as

p2n
elem

log n
elem

+ p3n
elem

≈ p2

h2 log
1
h2 +

p3

h2 ≈ N log 1
h2 + Np.

The overall computational complexity of the method is therefore

Np2︸︷︷︸
initialization stage

+ N3/2︸ ︷︷ ︸
build stage

+ N log 1
h2 + Np︸ ︷︷ ︸

solve stage

≈ Np2 + N3/2.
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As the method stores dense solution operators and Dirichlet-to-Neumann operators

on every level of the hierarchy, the total storage cost is analogous to the computational

cost of the solve stage. The amount of storage required by the method scales as

N log 1
h2 + Np.

The storage cost can become prohibitive when p is large, as the local solution operators

on each element require O(p3n
elem

) storage. However, these operators need not

be constructed and stored. In the initialization stage, local Dirichlet-to-Neumann

operators can be constructed directly by locally solving the PDE, evaluating the

outward flux, and then discarding the solution. In the solve stage, the solution on

the interior of each element can be computed by locally solving the PDE on the fly.

This reduces the storage cost to O(N log 1
h2 ) while increasing the computational cost

of the solve stage to O(N log 1
h2 + Np2) operations, but does not change the overall

computational complexity of the method.

3.4 Software

We have implemented the ultraspherical SEM in an open-source software package,

ultraSEM, written inMATLABwithout parallelization [67]. An outline of theworkflow

is depicted in Figure 3.5, and a simple example is shown in Figure 3.6.

The user constructs each element as an ultraSEM.Domain, which encodes the coor-

dinate transformations and merge indices local to each element. Convenient functions

for constructing rectangles, quadrilaterals, triangles, and polygons are available

via the commands ultraSEM.rectangle, ultraSEM.quad, ultraSEM.triangle, and

ultraSEM.polygon, respectively (see Figure 3.6 (left)), which automatically encode the

suitable transformations and merge indices. Elements can be combined to form larger

domains by merging them with the ‘&’ operator; the merge indices I will then corre-

spond to the order induced by the sequence of ‘&’ operations. More general meshes

can be constructed using the refine(dom) method (see Figure 3.6 (center)), which

performs uniform h-refinement on a given domain dom, or the refinePoint(dom,

[x,y])method, which performs adaptive h-refinement on dom around the point (x, y).
A PDO is specified by its coefficients for each derivative, in the form {{uxx,

uxy, uyy}, {ux, uy}, b}, where each term uxx, uxy, . . . can be a scalar (constant

coefficient) or function handle (variable coefficient). The domain and PDO are then

passed—along with a righthand side and polynomial order—to construct an ultraSEM

object (see Figure 3.6 (right)). The ultraSEM constructor initializes the local operators

on each element (see Algorithm 3.3.1), which are represented as ultraSEM.Leaf

objects in the hierarchy. The hierarchy of merged operators may then be built in

an upward pass via the build() command (see Algorithm 3.3.2), which creates a

tree of ultraSEM.Parent objects (if build() is not explicitly called, the build stage is

automatically performed when the user requests a solve to be executed). The solve
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Specify domain

as ultraSEM.Domain
Specify coefficients

of PDO

Specify righthand side

as function handle

Construct ultraSEM object,

initialize local operators

(see Algorithm 3.3.1)

Build hierarchy

with build()
(see Algorithm 3.3.2)

Solve with ‘\’ or solve()
(see Algorithm 3.3.3)

Return ultraSEM.Sol for

use with plot, feval, . . .

Update operators

with updateRHS()

Figure 3.5: A diagram of the code workflow in ultraSEM. The code is designed to mirror the steps of the
hierarchical Poincaré–Steklov scheme.

stage is invoked via the solve() command (or equivalently, the ‘\’ operator), which

computes the solution by applying the hierarchy of operators in a downward pass (see

Algorithm 3.3.3). The solution is returned as an ultraSEM.Sol object, which overloads

a host of functions for plotting (e.g., plot, contour) and evaluation (e.g., feval, norm).

An ultraSEM object that has been initialized and built can be repeatedly applied

to new boundary conditions by invoking solve() multiple times. The object can

also be cheaply updated to solve with a new righthand side by calling updateRHS(),

which alters the last column of each operator in the hierarchy to correspond to a new

particular solution.

3.5 Numerical results

3.5.1 Computational complexity

To illustrate the computational complexity of ultraSEM, we measure the execution

times of the initialization, build, and solve stages of the method under uniform h-
and p-refinement. Figure 3.7 shows the recorded timings for solving the variable

coefficient PDE ∇2u + sin(xy)u = f on the domain Ω = [0, 1]2 with a spatially

varying righthand and spatially varying Dirichlet boundary conditions.
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dom = ultraSEM.polygon(5);
plot(dom)

dom = refine(dom);
plot(dom)

p = 20; rhs = -1; bc = 0;
pdo = {{1,0,1}, {0,0}, 1000};
S = ultraSEM(dom, pdo, rhs, p);
u = S \ bc;
plot(u)

Figure 3.6: A simple example of the syntax in ultraSEM. A pentagonal domain (with side length 1.2) is meshed
into five quadrilaterals (left) and uniformly refined (center). The Helmholtz equation ∇2u + 1000u = −1 with
zero Dirichlet boundary conditions is then solved on the mesh using polynomials of degree 20 on each element
(right).

In Figure 3.7 (left), the polynomial order is fixed at p = 4 and a Cartesian mesh with

O(1/h2) elements is successively refined. The initialization and build stages both

exhibit O(1/h2) scaling as h→ 0, while the solve stage scales as O(1/h2 log(1/h2)).
The timings for the build stage do not exhibit the expected O(1/h3) scaling. This
is likely due to the fact that the build stage relies on dense linear algebra routines

that have been heavily optimized for the relatively small O(1/h)×O(1/h) matrices

tested here.

In Figure 3.7 (right), the Cartesian mesh is fixed to have 4× 4 elements and the

polynomial order p is successively increased. The cost of the initialization stage

dominates, exhibiting close to the expected O(p4) scaling as p→ ∞. The build and

solve stages perform better than expected, both exhibiting O(p2) scaling. Again, this

can likely be attributed to the performance of dense linear algebra routines in the

regime of p tested.

3.5.2 Convergence and hp-adaptivity

We now investigate the convergence properties of ultraSEM with respect to the mesh

size h and polynomial order p. As a test problem, we consider solving the Helmholtz

equation,

∇2u + (
√

2ω)2u = 0, u ∈ [−1, 1]2, (3.5.1)

with ω ∈ R and Dirichlet boundary conditions given so that the exact solution is

u(x, y) = cos(ωx) cos(ωy). To measure convergence over a range of polynomial

orders, we set ω = p so that the number of degrees of freedom per wavelength

remains fixed independent of p. We then solve (3.5.1) under uniform h-refinement.

Figure 3.8 shows the relative error in the L2
norm as h → 0 for polynomial orders
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O(1
/h2 )

O(
(1/h2 )

log(1
/h2 )

)

O(p
4 )

O(p2 )

O(p2 )

Figure 3.7: Execution time (in seconds) for ultraSEM over a range of mesh sizes (left) and polynomial orders
(right). Timings are depicted for the initialization stage (red), build stage (blue), and solve stage (green), when
solving the PDE ∇2u + sin(xy)u = f on the domain Ω = [0, 1]2 with spatially varying righthand side and
spatially varying Dirichlet boundary conditions. On the left, we successively refine a Cartesian mesh while
keeping the polynomial order fixed at p = 4. On the right, we use a 4× 4 Cartesian mesh while successively
increasing the polynomial order.

p = 5, p = 10, and p = 30. The convergence rate is observed to be O(hp−1). If

error is measured in the H1
or H2

norm, where Hk
denotes the Sobolev space of

functions whose weak derivatives up to order k are in L2
, then the convergence rate

is similarly O(hp−1). Since our method is sparse with respect to p, the exact rate of
convergence is not so important, as a degree-p discretization may easily be replaced

by a degree-(p + 1) discretization with minimal increase in computational cost.

In general, the mesh size h and polynomial order p need not be the same on each

element. Adaptive h-refinement can be performed on each element locally; however,

subdividing an element may give rise to meshes with hanging nodes (i.e., nodes of the

mesh which occur in the middle of an element’s face). While hanging nodes may be

handled in the hierarchical Poincare–Steklov scheme through the use of interpolation

operators [74], we choose to avoid them here. To avoid hanging nodes, ultraSEM

performs h-refinement in a conforming way around specified corners or points, by

subdividing a quadrilateral element into three or five children, respectively (see

Figure 3.9).

The ultraspherical spectral element method can naturally perform p-adaptivity
by applying local interpolation and restriction operators to the elemental matrices

involved in each merge operation. Since each unknown interface function is repre-

sented by a vector of Chebyshev coefficients, interpolation to and restriction from an

interface can be performed simply by zero-padding or truncating the interface data.

The polynomial order on an interface can be defined in a variety of ways. Popular

choices include the minimum rule and maximum rule [55]; we employ the minimum

rule here, which sets the polynomial order on an interface to be the minimum of the

polynomial orders on the adjacent elements.
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p = 5, O(h 4)

p
=

10
, O

(h 9
)

p
=
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,
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e −0.8N 0.27 )

Figure 3.8: Convergence of ultraSEM with respect to h and p. (Left) Relative error in the L2 norm when solving
(3.5.1) under uniform h-refinement, for p = 5 (red), p = 10 (blue), and p = 30 (green). To measure convergence
over a range of polynomial orders, we set ω = p so that the number of degrees of freedom per wavelength remains
fixed independent of p. In each case, O(hp−1) convergence is observed. (Right) An a priori hp-adaptivity
strategy is applied to the L-shape problem in (3.5.2). The relative error decays super-algebraically in the total
number of degrees of freedom N.

Figure 3.9: To avoid hanging nodes, ultraSEM performs h-refinement in a conforming way. (Left) A square is
successively refined into a corner by subdividing into three children per refinement level. (Right) A square is
successively refined around a point by subdividing into five children per refinement level.

Wenow consider the application of an hp-adaptivity strategy to the classical L-shape
domain problem [118],

∇2u = 0, u ∈ [−1, 1]2 \ [0, 1]× [−1, 0], (3.5.2)

with Dirichlet boundary conditions given so that the exact solution is u(r, θ) =
r2/3 sin(2θ/3), where r =

√
x2 + y2

and θ = tan−1(y/x). The reentrant corner of

the domain induces a singularity in the solution so that u ∈ H1+2/3
near the origin,

where α = 1 + 2/3 is the largest α such that u ∈ Hα
. Therefore, any strategy based on

uniform h- or p-refinement is necessarily restricted to algebraic convergence
17

[19].

17
For this Laplace problem, alternative methods may provide higher accuracy per degree of

freedom than element methods. For instance, root-exponential convergence in the supremum norm can

be achieved by representing the solution as the real part of a rational function with poles exponentially

clustered near each corner [81].
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That is, for a numerical solution uhp based on uniform refinement, the error can be

bounded a priori by

‖u− uhp‖L2 ≤ ‖u− uhp‖H1 ≤ C
(

h
p

)2/3

‖u‖H1+2/3 ,

for some constant C > 0. However, by employing a suitable hp-adaptivity strat-

egy, super-algebraic convergence in the number of degrees of freedom N can be

achieved [18], i.e.,

‖u− uhp‖L2 ≤ ‖u− uhp‖H1 ≤ C1e−C2N1/3
,

for some constants C1, C2 > 0. Here we employ an a priori adaptivity strategy, where

h-refinement is performed into the reentrant corner on elements adjacent to the

origin and p-refinement is performed on all other elements [2]. Given a desired

relative error tolerance and an initial coarse hp-mesh, an automatic hp-adaptivity
loop is run that successively refines or coarsens each element in h or p based on an

a posteriori error indicator [1, 119]. Here, we compute the element-wise error from

the exact solution as a surrogate for a true a posteriori error indicator. Figure 3.8

(right) shows the relative error in the L2
norm versus the total number of degrees of

freedom N in the adaptive hp-mesh for a sequence of error tolerances. Super-algebraic

convergence to the solution is observed as the number of degrees of freedom increases.

A least-squares fit to the data gives an approximate convergence rate of O(e−0.8N0.27
).

To illustrate the range of h and p used on a given mesh, for a relative error tolerance

of 10−6
the final mesh contains 15 levels of corner h-refinement (see Figure 3.9 (left))

and polynomial orders ranging from 3 (near the reentrant corner) to 13 (away from

the reentrant corner).

As a practical example of hp-adaptivity, we consider using ultraSEM on a domain

with small-scale geometric features along its boundary. The domain Ω is a snowflake

shape created by a fractal-like Penrose tiling (see Figure 3.10 (left)). We construct a

mesh of 4,568 quadrilaterals over Ω using the meshing software Gmsh [75], with the

element size constrained to be smaller near the boundary and larger in the interior.

To specify a p-adaptive discretization, we define a function that varies smoothly from

p = 40 in the center of Ω to p = 7 near the boundary, indicating that coarse elements

in the interior of Ω employ a high-p discretization while fine elements close to the

boundary of Ω employ a lower p. The total number of degrees of freedom for this

hp-mesh is N = 333,627. We locate the domain Ω such that y < 0 for all (x, y) ∈ Ω,

and solve the gravity Helmholtz equation

∇2u + 100(1− y)u = −1, u ∈ Ω, (3.5.3)

with zero Dirichlet boundary conditions. The computation in ultraSEM takes about 90

seconds. The computed solution is shown in Figure 3.10 (right). The h-adaptive nature

61



CHAPTER 3. THE ULTRASPHERICAL SPECTRAL ELEMENT METHOD

of the discretization allows for the small-scale geometry of the domain boundary to be

resolved without using a prohibitive number of elements, while the p-adaptive nature
of the discretization allows for the high-degree approximation of smooth functions

on coarse elements.

Figure 3.10: (Left) A snowflake-shaped domain created by a Penrose tiling (with side length 0.066) is adaptively
meshed with 4,658 elements, with p varying from p = 7 on small elements to p = 40 on large elements. (Right)
The gravity Helmholtz equation (3.5.3) is solved on this domain. The solution is represented by N = 333,627
degrees of freedom.

3.5.3 Implicit time-stepping for parabolic problems

The ability to reuse precomputed solution operators allows for efficient implicit

time-stepping for parabolic problems. To demonstrate, we consider solving the

variable-coefficient convection-diffusion equation on the domain Ω = [0, 10]× [−1, 1]
over the time span [0, T],

∂u
∂t

= κ∇2u−∇ · (b(x, y)u) , u ∈ Ω× [0, T], (3.5.4)

for T > 0, with initial condition u(x, y, 0) = e−4(x−1)2−4y2
and zero Dirichlet boundary

conditions. This equation models the transport of a contaminant concentration in

a flow. We define the diffusivity κ = 0.01 and the convective velocity b(x, y) =
(1 − eγx cos 2πy, γ

2π eγx sin 2πy). Here, the velocity field b(x, y) is the analytical

solution to the Kovasznay flow [101], where γ = Re/2−
√

Re2/4− 4π2
and Re = 100

is the Reynolds number.

Define the time step ∆t = 0.1 and time points tn = n∆t for integers n ≥ 0, and let

un
denote the approximate solution to (3.5.4) at time tn. Discretizing in time using the

backward Euler method yields a steady-state PDE in un+1
,

un+1 − ∆t κ∇2un+1 + ∆t ∇ ·
(

bun+1
)
= un, (3.5.5)
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which must be solved once per time step to compute un+1
from un

. We use ultraSEM

to solve (3.5.5) on a 2× 10 Cartesian mesh of Ω with polynomial order p = 10 on

each element. Figure 3.11 (left) shows snapshots of the computed solution at times

t = 0, t = 1, and t = 5. As the righthand side of (3.5.5) depends on n, the operators in
ultraSEMmust be updated at each time step. If the operators are reconstructed from

scratch at each time step, simulating to time T = 5 completes in roughly 9 seconds

(see Figure 3.11 (right, red)). If instead only the particular solution is reconstructed

using updateRHS(), then the same simulation completes in less than a second (see

Figure 3.11 (right, blue)). Figure 3.11 (right) compares the execution times required

to simulate (3.5.4) over the time span [0, T] using these two methods. It is clear that

when many time steps are taken, updateRHS() should always be used.

with updateRHS()

w
it
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u
t
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te
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)

Figure 3.11: (Left) Snapshots of the solution to the convection-diffusion equation (3.5.4) at times t = 0, t = 1,
and t = 5, computed using ultraSEM in space and backward Euler in time. (Right) The execution time required
to simulate (3.5.4) over the time span [0, T], by either reconstructing the operators from scratch at each time step
(red) or updating the particular solution using updateRHS() (blue).
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Chapter 4

Efficient operator-coarsening multigrid
schemes for local discontinuous Galerkin
methods†

4.1 Introduction

Discontinuous Galerkin (DG) methods have gained broad popularity in recent years.

They are well-suited to hp-adaptivity, provide high-order accuracy, and can be

applied to a wide range of problems on complex geometries with unstructured

meshes. Although DG methods were first applied to the discretization of hyperbolic

conservation laws, they have been extended to handle elliptic problems and diffusive

operators in a unified framework [11]. Such methods include the symmetric interior

penalty (SIP) method [10,57], the Bassi–Rebay (BR1, BR2) methods [25, 26], the local

discontinuous Galerkin (LDG) method [51], the compact discontinuous Galerkin

(CDG) method [137], the line-based discontinuous Galerkin method [138], and

the hybridizable discontinuous Galerkin (HDG) method [48]. In particular, the

development of efficient solvers for DG discretizations of elliptic problems is an active

area of research.

Among the panoply of DG methods for elliptic problems, the LDG method is a

popular choice: it is accurate, stable, simple to implement, and extendable to higher-

order derivatives [179]. Additionally, on Cartesian grids it has been shown to be

superconvergent [49]. The LDG method results in symmetric positive (semi)definite

discretizations which are well-suited to solution by efficient iterative methods. In

particular, the multigrid method has emerged as a natural candidate due to its

success in the continuous finite element and finite difference communities, both as a

standalone solver and as a preconditioner for the conjugate gradient (PCG) method.

However, direct application of standard multigrid techniques to DG discretizations of

elliptic problems can result in suboptimal performance when inherited bilinear forms

†
This chapter is a reformatted version of the following jointly authored publication: D. Fortunato,

C. H. Rycroft, and R. Saye, Efficient operator-coarsening multigrid schemes for local discontinuous Galerkin
methods, SIAM J. Sci. Comput., 41 (2019), pp. A3913–A3937, https://doi.org/10.1137/18M1206357.

64

https://doi.org/10.1137/18M1206357


CHAPTER 4. OPERATOR-COARSENING MULTIGRID FOR LDG METHODS

are employed [5, 82], and much work has gone into developing specialized smoothers

and coarse-correction methods to remedy this issue, even on Cartesian grids [63, 97].

When a mesh hierarchy is available, geometric h-multigrid is a natural choice

of solver. Error estimates have been derived for a multilevel interior penalty (IP)

method on unstructured meshes, yielding convergence factors in the range ρ ≈ 0.3–
0.5 for Poisson’s equation [35, 82]; the method has also been applied to adaptively

refined Cartesian grids with similar results [98]. Subsequent work describes how the

multilevel IP method [82] can be used as a preconditioner for the LDG method—both

for the Schur complement system (using conjugate gradient) and for the saddle-point

system (using GMRES)—resulting in a bounded condition number with respect

to mesh size h [97]. More recent work for LDG and IP uses a multigrid W-cycle

on nested [5] and agglomerated [6] unstructured meshes; however, these results

indicate poor convergence factors of ρ ≈ 0.8–0.9 even with many smoothing steps.

On non-nested polygonal meshes, h-independent iteration counts with convergence

factors ρ ≈ 0.2–0.3 are achieved for SIP using an additive Schwarz smoother with 3–8

smoothing steps per V-cycle [8].

A popular choice for high-order DG methods is p- or hp-multigrid [24, 65, 89, 109],

where p refers to coarsening the polynomial degree p in the multilevel hierarchy, and

hp refers to some combined strategy of coarsening the mesh size h as well as the

polynomial degree p of the underlying discretization. Using factor-of-two coarsening

in p with an element Jacobi smoother, convergence factors of ρ ≈ 0.5 were achieved

for Laplace’s equation with p ≤ 4 [89]. Fidkowski et al. [65] used a line smoother

with sequential coarsening in p that gave similar results for convection–diffusion

problems, though the performance degraded as h → 0. A method employing an

overlapping Schwarz smoother with factor-of-two coarsening was used with PCG

on LDG discretizations up to p = 32 [158]; this method exhibited good convergence

factors of ρ ≤ 0.1 on high-aspect-ratio Cartesian grids, at the cost of an expensive

smoother.

Algebraic multigrid methods have also been applied to DG discretizations of elliptic

problems. A hierarchy of operators can be defined by agglomerating neighboring

unknowns based on smoothed aggregation (SA), resulting in average convergence

factors of ρ ≈ 0.4 and ρ ≈ 0.2 for the bilinear BR2 and SIP methods, respectively [141].

An SA method employing energy minimization was used with PCG to achieve h-
independent convergence factors of ρ ≈ 0.2 for LDG discretizations, but performance

degraded with increasing p [122]. A method based on unsmoothed aggregation was

developed for the IP method using a coarse space consisting of continuous linear

basis functions [27]; this method proved robust for multi-phase problems with large

jumps in ellipticity coefficient, but efficiency weakly degraded with mesh size. A

related approach based on smoothed aggregation and low-order coarse grid correction

yielded similar results [156].

Independent of the type of multigrid method, a particular fact to note—and

something we believe underpins the difficulties in applying multigrid to DG—is that

coarsening a fine-grid operator is not always the same as constructing that operator
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directly from the coarse grid. Indeed, it was noted by Antonietti et al. [5] that for

all stable and strongly consistent DG methods, “convergence cannot be independent

of the number of levels if inherited bilinear forms are considered (i.e., the coarse

solvers are the restriction of the stiffness matrix constructed on the finest grid).”

Furthermore they noted that non-inherited forms must be employed for the multigrid

method to be scalable. In the context of two-level methods, the reason for this

loss of scalability is known [4]. In this chapter, for the LDG method, we present a

simple modification to traditional multigrid operator coarsening that yields optimal

multigrid convergence and can be extended to other DG discretizations of elliptic

problems. We confirm that traditional coarsening of the fine-mesh elliptic operator

results in poor performance, and show that the coarsening of the saddle-point flux

formation restores optimal multigrid efficiency. Our approach is equivalent to pure

geometric multigrid but avoids the need to explicitly build the coarse mesh and its

associated components, such as quadrature rules, Jacobianmappings, lifting operators,

and face-to-element enumerations—as discussed, this holds benefit for a variety of

intricate DG implementations where building the coarse mesh can be problematic.

Nevertheless we point out that in the pure geometric multigrid setting, quadrature-

free DG methods [7] have recently been proposed which avoid the construction of

coarse mesh quadrature rules.

This chapter is structured as follows. In section 4.2, we formulate a general

DG discretization of Poisson’s equation and derive the LDG method through the

appropriate choice of numerical flux. In section 4.3, we describe the construction

of geometric hp-multigrid methods in the corresponding DG setting. In particular,

we show that traditional operator coarsening can fail to create the coarse operator

resulting from faithful rediscretization in a pure geometric multigrid setting for LDG

methods, and present a modified coarsening strategy that remedies this. In section 4.4,

we present numerical results for the standard and modified multigrid methods on

uniform and adaptively-refined Cartesian grids in 2D and 3D. We conclude with some

examples of multi-phase elliptic interface problems on implicitly defined meshes,

which demonstrate good multigrid performance even on meshes with long and thin

filaments as well as tiny and dispersed phase components.

4.2 Discontinuous Galerkin formulation

4.2.1 Model problem

The model elliptic problem considered in this work is the Poisson problem

−∇2u = f in Ω,
u = g on ΓD,

∇u · n = h on ΓN,

(4.2.1)
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where Ω is a domain in Rd
, ΓD and ΓN denote the components of ∂Ω on which

Dirichlet and Neumann boundary conditions are imposed, n is the outward unit

normal to the boundary, and f , g, and h are given functions defined on Ω and its

boundary.

4.2.2 DG for elliptic problems

In order to apply a DG method to (4.2.1), we rewrite it as a first-order system by

introducing the auxiliary variable q = ∇u andwriting the Laplacian as the divergence

of q [11]:

q = ∇u in Ω,
−∇ · q = f in Ω,

u = g on ΓD,
q · n = h on ΓN.

(4.2.2)

In this work, we mainly consider discretizations of (4.2.2) wherein the corresponding

meshes arise from Cartesian grids, quad/octrees, or implicitly defined meshes of

more complex curved domains (see subsections 4.4.1, 4.4.3, and 4.4.4, respectively).

As such, it is natural to adopt a tensor-product piecewise polynomial space. Let

E =
⋃

i Ei denote the set of elements of a mesh of Ω, let p ≥ 1 be an integer, and define

Qp(E) to be the space of tensor-product polynomials of degree p on the element E.
For example, Q3 is the space of bicubic (in 2D) or tricubic (in 3D) polynomials having

16 or 64 degrees of freedom, respectively. We define the corresponding spaces of

discontinuous piecewise polynomials and vector fields on the mesh as

Vh(E) =
{

v : Ω→ R
∣∣ v|E ∈ Qp(E) for every E ∈ E

}
, (4.2.3)

Vd
h (E) =

{
ω : Ω→ Rd ∣∣ ω|E ∈ [Qp(E)]d for every E ∈ E

}
, (4.2.4)

respectively. We denote by (·, ·) the natural L2
inner product on Vh and by ‖ · ‖ the

corresponding norm, ‖u‖2 = (u, u), with analogous definitions for Vd
h .

In a DG method, both q and its divergence are defined weakly via numerical

fluxes defined on each mesh face. The weak form of (4.2.2) consists of finding

(qh, uh) ∈ Vd
h ×Vh such that∫

E
qh ·ω = −

∫
E

uh∇ ·ω +
∫

∂E
ûh ω · n, (4.2.5)∫

E
qh · ∇v−

∫
∂E

q̂h v · n =
∫

E
f v, (4.2.6)

for all test functions (ω, v) ∈ [Qp(E)]d ×Qp(E) and for all E ∈ E . The numerical

fluxes q̂h and ûh are approximations to qh and uh, respectively, on each mesh face and

define how the degrees of freedom in each element are coupled together.
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To more succinctly describe the coupling between elements, the following standard

notation is adopted. Consider two adjacent elements E+
and E− which share a face in

E . Let n± denote the outward unit normals of ∂E± along the shared face and (ω±, v±)
denote the traces of (ω, v) ∈ Vd

h ×Vh from E± on the shared face. The average {{·}}
and jump [[·]] operators on the shared face are then defined as

{{ω}} = 1
2(ω

+ + ω−), {{v}} = 1
2(v

+ + v−),
[[ω]] = ω+ · n+ + ω− · n−, [[v]] = v+n+ + v−n−.

On boundary faces, (ω−, v−) shall refer to the traces of (ω, v) from the corresponding

element touching ∂Ω.

4.2.3 The local discontinuous Galerkin method

The choice of numerical flux in (4.2.5)–(4.2.6) defines a DG method. Here we focus

on the LDG method [51], which chooses numerical fluxes q̂h and ûh according to the

general form

q̂h =


{{qh}}+ β[[qh]]− τ0[[uh]] on any interior face,

q−h − τD(u−h − g)n on any face of ΓD,

h n on any face of ΓN,
(4.2.7)

and

ûh =


{{uh}} − β · [[uh]] on any interior face,

g on any face of ΓD,

u−h on any face of ΓN,
(4.2.8)

where β is a (possibly face-dependent) user-defined vector; for example, in a one-sided

flux scheme, β = ±1
2 n. Here, the numerical flux q̂h includes penalty stabilization

terms; τ0 ≥ 0 is a penalty parameter associated with interior faces and τD > 0 is

associatedwith Dirichlet boundary faces (if any). Generally, τ0 must be strictly positive

to ensure well-posedness of the discrete problem, but in some cases (e.g., on Cartesian

grids with particular choices of β), τ0 can be set equal to zero [47]. If ΓD is nonempty,

τD must be positive to ensure well-posedness of the final discrete problem. To be

consistent with the scaling of penalty parameters in other DGmethods, we choose the

penalty parameters to scale inversely with the element size h [44] so that τ0 = τ̃0/h
and τD = τ̃D/h where τ̃0 and τ̃D are constants.

18
Furthermore, although arbitrarily

small choices of τ̃0 and τ̃D suffice to ensure well-posedness, later we show that a

carefully considered choice of these values can greatly benefit multigrid performance

(see subsection 4.4.2).

18
To obtain uniform stability in the limit of large p, τ0 should also scale with p2

[139]; we do not

consider this aspect for the moderate values of p tested in this work (p = 1–8).
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We first particularize (4.2.5) for the LDG method, which is the weak statement that

q = ∇u. We slightly modify the weak form (4.2.5) by defining qh ∈ Vd
h in strong-weak

form,
19

such that ∫
E

qh ·ω =
∫

E
∇uh ·ω +

∫
∂E
(ûh − uh)ω · n (4.2.9)

holds for every element E ∈ E and every test function ω ∈ [Qp(E)]d. Upon summing

(4.2.9) over every element of the mesh and using the definition of the numerical flux

ûh in (4.2.8), we have that, for any ω ∈ Vd
h ,∫

Ω
qh ·ω = ∑

E∈E

∫
E
∇uh ·ω−

∫
Γ0

[[uh]] · ({{ω}}+ β[[ω]]) +
∫

ΓD

(g− u−h )ω
− · n, (4.2.10)

where Γ0 denotes the union of all interior faces of E . Define the following operators:

• Let ∇h : Vh → Vd
h be the broken gradient operator and L : Vh → Vd

h be the lifting
operator, such that∫

Ω
(∇hu) ·ω = ∑

E∈E

∫
E
∇u ·ω,∫

Ω
(Lu) ·ω = −

∫
Γ0

[[u]] · ({{ω}}+ β[[ω]])−
∫

ΓD

u−ω− · n

holds for every ω ∈ Vd
h and each u ∈ Vh.

• Define JD(g) ∈ Vd
h such that∫

Ω
JD(g) ·ω =

∫
ΓD

g ω− · n

holds for every ω ∈ Vd
h .

Accordingly, (4.2.10) is equivalent to the statement that

qh = (∇h + L)uh + JD(g) = Guh + JD(g) (4.2.11)

where G : Vh → Vd
h is the discrete gradient operator, G = ∇h + L. The formula (4.2.11)

is the LDG discretization of the statement q = ∇u, taking into account Dirichlet

boundary data.

19
The strong-weak form states that qh must satisfy

∫
E qh · ω =

∫
E∇uh · ω +

∫
∂E(ûh − uh)ω · n

whereas theweak form states that qh must satisfy

∫
E qh ·ω = −

∫
E uh∇ ·ω+

∫
∂E ûh ω · n. The two forms

are equivalent whenever the employed quadrature scheme exactly satisfies the identity of integration

by parts, which in practice is generally true for quadrilateral, prismatic, simplicial elements, etc., but is

generally not true when approximate numerical quadrature schemes are used, e.g., as on implicitly

defined curved elements. In the latter situation, to ensure symmetry of the final discrete Laplacian

operator, it is necessary to use the strong-weak form to define qh and the weak form to define the

divergence of qh (or vice versa) [151].
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Next, we particularize (4.2.6) for the LDGmethod, which is the weak statement that

−∇ · q = f . Upon summing (4.2.6) over every mesh element and using the definition

of the numerical flux q̂h in (4.2.7), we have that, for any v ∈ Vh,

∑
E∈E

∫
E

qh · ∇v−
∫

Γ0

({{qh}}+ β[[qh]]− τ0[[uh]]) · [[v]]−
∫

ΓD

(q−h · n− τDu−h ) v−

=
∫

Ω
f v + τD

∫
ΓD

g v− +
∫

ΓN

h v−.

(4.2.12)

Additionally, define the following operators:

• Similar to the operator JD above, let JN(h) ∈ Vh be such that∫
Ω

JN(h) v =
∫

ΓN

h v−

for all v ∈ Vh.

• Let E0, ED : Vh → Vh be the operators such that, for each u ∈ Vh,∫
Ω

E0(u) v =
∫

Γ0

[[u]] · [[v]],
∫

Ω
ED(u) v =

∫
ΓD

u−v−

hold for every v ∈ Vh. These operators penalize jumps in the discrete solution

on interior and Dirichlet boundary faces, respectively.

• Let aD(g) ∈ Vh be such that ∫
Ω

aD(g) v =
∫

ΓD

g v−

for all v ∈ Vh.

Then, using the fact that (qh,∇hv) + (qh, Lv) = (qh, Gv), (4.2.12) is equivalent to

(qh, Gv) + τ0(E0uh, v) + τD(EDuh, v) = ( f + JN(h) + τDaD(g), v), (4.2.13)

or, putting aside penalty terms, G∗qh = f + JN(h), where−G∗ is the discrete divergence
operator, the negative adjoint of the discrete gradient operator G; this is the LDG

discretization of the statement that −∇ · q = f , taking into account Neumann

boundary data.
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4.2.3.1 Primal formulation

To obtain the primal formulation of the LDG method, we combine (4.2.13) with (4.2.11)

to eliminate qh and arrive at an equation for uh. The primal LDG formulation of (4.2.1)

reads as follows: find uh ∈ Vh such that

a(uh, v) = `(v) (4.2.14)

for all v ∈ Vh, where the bilinear form a(·, ·) is given by

a(uh, v) = (Guh, Gv) + τ0(E0uh, v) + τD(EDuh, v)

and the linear functional `(·) is given by

`(v) = ( f , v)− (JD(g), Gv) + (JN(h), v) + τD(aD(g), v).

One may verify that the bilinear form a(u, v) is symmetric. Discretization of the

primal form (4.2.14) with respect to a particular basis of Vh yields a symmetric positive

(semi)definite linear system of the form
20
.

Auh = `, (4.2.15)

where A is the matrix form of the negative discrete Laplacian operator.

4.2.3.2 Flux formulation

An alternative, but equivalent, characterization of the LDG method is the so-called

flux formulation, which does not eliminate the auxiliary variable qh from the system

(4.2.11) and (4.2.13) but instead retains it as a primary unknown. The flux formulation

of (4.2.1) then reads as follows: find (qh, uh) ∈ Vd
h ×Vh such that

m(qh, ω)− grad(uh, ω) = j(ω),
−div(qh, v) + τ(uh, v) = k(v),

(4.2.16)

for all (ω, v) ∈ Vd
h ×Vh, where

m(q, ω) = (q, ω), τ(u, v) = τ0(E0u, v) + τD(EDu, v),
grad(u, ω) = (Gu, ω), j(ω) = (JD(g), ω),

div(q, v) = −(q, Gv), k(v) = ( f , v) + (JN(h), v) + τD(aD(g), v).

20
Throughout this chapter we shall frequently use the same symbol to denote (i) elements of spaces

such as Vh or operators acting on such elements, and (ii) vectors of coefficients in the chosen basis or

matrices acting on such vectors. The distinction should be clear from context. Further comments are

provided in subsection 4.2.3.3
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Discretization of the flux form (4.2.16) with respect to a particular basis of Vd
h ×Vh

yields a symmetric positive (semi)definite linear system of the form[
M −MG
−MD MT

] [
qh

uh

]
=

[
j
k

]
. (4.2.17)

Here, M is the block diagonal mass matrix for Vh or Vd
h (depending on context), G is

the matrix form of the discrete gradient operator, D = −M−1G>M is the matrix form

of the discrete divergence operator, and T = τ0E0 + τDED contains the discrete penalty

terms. Since M−1
is also block diagonal, we can easily take the Schur complement of

M in (4.2.17) to obtain a linear system for the unknown vector uh,

Auh = `, (4.2.18)

where A = M(−DG + T) = G>MG + MT and ` = k− G> j.
The reduced linear system (4.2.18) is equivalent to the discrete primal formulation

(4.2.15). However, as we will demonstrate next in section 4.3, the two formulations

have different implications for multigrid methods. In particular, applying standard

operator coarsening to the discrete primal formulation results in poor multigrid

performance; coarsening the discrete flux formulation (4.2.17) in both qh and uh before
taking the Schur complement (4.2.18) results in optimal multigrid performance, and

is equivalent to pure geometric multigrid.

4.2.3.3 Remarks on the choice of basis

The analysis and discussion presented in this work is agnostic to the particular choice

of basis for the piecewise polynomial space Vh. One may use a nodal basis, a modal

basis, or some other choice, provided it is understood that every basis-dependent

matrix (e.g., the mass matrix M) is defined consistently, relative to the chosen basis. In

a numerical implementation, one should consider aspects of conditioning, accuracy,

stability, sparsity, and computational complexity. For example, for low-to-moderate

polynomial degree on rectangular elements, a nodal basis using Gauss–Lobatto nodes

is a natural choice [91]; for very large p, a modal basis may have better conditioning

or improved cost of mass matrix inversion, and thus may be more suitable. In our

particular implementation, we have used a tensor-product Gauss–Lobatto nodal

basis. We emphasize however that the presented multigrid methods and the essential

conclusions drawn are not dependent on this choice.

4.3 Multigrid methods

We assume here that the reader has some familiarity with multigrid methods; see

for example Briggs, Henson, and McCormick [38] for a review of their design and
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operation. A geometric multigrid method consists of four main ingredients: a mesh

hierarchy, an interpolation operator to transfer approximate solutions from a coarse

mesh onto a fine mesh, a restriction operator to formulate a coarse mesh correction

problem by restricting the residual from the fine mesh, and a smoother/relaxation

method. We consider these ingredients separately first, and then combine them into a

multigrid V-cycle.

Multigrid methods rely on the complementarity between relaxation and interpo-

lation. In the geometric multigrid context, a relaxation method that is effective at

damping high-frequency, oscillatory errors but slow to damp smooth, low-frequency

ones benefits from the action of an interpolation operator that can accurately transfer

low-frequency information. By solving a correction equation for the error on a coarser

grid, fine-grid low-frequency errors become coarse-grid high-frequency errors for

which coarse-grid relaxation is effective. An interpolation operator then transfers this

low-frequency correction to the fine grid.

In the following sections we focus our description on h-multigrid methods, wherein

the mesh is coarsened geometrically at each level. However, much of our analysis

carries over to p-multigridmethods, which hold themesh fixed and instead coarsen the

polynomial space by reducing p at each level. We will try to point out the distinctions

between the two methods when the analogues are not immediately obvious, though

we will use the notation h in our description.

4.3.1 Mesh hierarchy

In this work, we employ quadtrees (in 2D) and octrees (in 3D) to define the finest

mesh—whether it is uniform, adaptively refined, or used as the background grid for

an implicitly defined mesh (see subsection 4.4.4). The tree structure then naturally

defines a hierarchy of nested meshes for use in h-multigrid, which are spatially

coarsened by a factor of two in each dimension on each level. For adaptively refined

meshes where the cell size is not uniform, we coarsen each element as rapidly as the

tree structure permits (see, e.g., Figure 4.6).

In the context of p-multigrid methods, a mesh hierarchy is defined by applying a

specific p-coarsening strategy to the fine mesh. For example, one could coarsen p
sequentially (p→ p− 1→ p− 2→ . . .→ 1), by a factor of two (p→ p/2→ p/4→
· · · → 1), or by some user-defined sequence of p’s. The first method is a common

choice when low-order polynomials are used on the finest mesh, whereas the second

method is better suited to high-order discretizations.

Mesh hierarchies can also be generated by combining coarsening strategies in both

h and p. For example, a popular choice is to layer p-multigrid on top of h-multigrid,

so that h-multigrid with a low-order polynomial degree is used as the bottom solver

in the p-multigrid hierarchy.
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4.3.2 Interpolation

The interpolation operator I f
c transfers a piecewise polynomial function uc ∈ V2h(Ec)

defined on a coarse mesh Ec to a piecewise polynomial function u f ∈ Vh(E f ) on a

fine mesh E f . (Throughout this work, subscripts or superscripts f , h and c, 2h shall

denote objects corresponding to the fine mesh and coarse mesh, respectively.) We

define the interpolation operator so that it injects the piecewise polynomial function

on the coarse mesh into the fine mesh, unmodified. From the h-multigrid perspective,

u f |E f on the fine element E f is simply the polynomial uc|Ec restricted to E f , where

Ec ⊃ E f is the corresponding coarse element in the mesh hierarchy. From the p-
multigrid perspective, the lower-degree polynomial uc can be exactly represented

as a higher-degree polynomial by taking the higher-order coefficients of u f to be

zero. In either case, when regarded as an operator from L2(Ω)→ L2(Ω), I f
c is the

identity operator. The operator is linear and has the property that it preserves constant

functions, i.e., uc ≡ 1 is mapped to u f ≡ 1. This property ensures that, throughout

a V-cycle, the coarse mesh discrete problems preserve the compatibility condition

required in semidefinite problems having solely Neumann boundary conditions.

4.3.3 Restriction

We define the restriction operator Rc
f : Vh(E f ) → V2h(Ec) as the adjoint of the

interpolation operator, i.e., such that

(Rc
f u f , uc)Ec = (u f , I f

c uc)E f (4.3.1)

holds for every u f ∈ Vh(E f ) and every uc ∈ V2h(Ec). Equivalently, letting I f
c , Rc

f , uc,

and u f also denote matrices and vectors relative to the user-defined bases of Vh(E f )
and V2h(Ec), (4.3.1) can be restated as

(Rc
f u f )

>Mcuc = u>f M f I f
c uc

where Mc and M f are the block-diagonal mass matrices of the coarse and fine meshes,

respectively. Therefore,

Rc
f = M−1

c (I f
c )
>M f . (4.3.2)

Defining the restriction operator in this manner—sometimes referred to as Galerkin

projection—results in several notable properties:

• One may interpret Rc
f u f as “averaging” elemental polynomials of u f ∈ Vh(E f )

on the fine mesh to determine a coarsened piecewise-polynomial representation

on the coarse mesh. The averaging is performed in a way that locally preserves
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the mass of u f : indeed, since I f
c preserves constant functions, we have that

(Rc
f u f , 1)Ec = (u f , 1)E f for all u f ∈ Vh(E f ).

• The adjoint method can also be viewed as an L2
projection of u f ∈ Vh(E f ) onto

V2h(Ec). The variational problem arg minuc∈V2h(Ec)
‖uc − u f ‖2

Ω optimizes the

functional

V2h(Ec) 3 uc 7→ (uc, uc)Ec − 2(u f , I f
c uc)E f = u>c Mcuc − 2u>f M f I f

c uc

whose unique minimum is given by uc = M−1
c (I f

c )
>M f u f .

• From the preceding property, one can immediately infer that

Rc
f I f

c = I, (4.3.3)

where I is the identity operator; i.e., interpolating a piecewise polynomial

function from a coarse mesh onto a fine mesh and immediately restricting the

result shall return the original function. The relation in (4.3.3) together with

(4.3.2) also provides a method to compute the coarse-mesh mass matrix from

the fine-mesh mass matrix:

Mc = (I f
c )
>M f I f

c . (4.3.4)

Given a linear operator A : Vh(E f )→ Vh(E f ), one can define a coarsened operator

C(A) : V2h(Ec) → V2h(Ec) in a similar way, by proceeding variationally: we define

C(A) such that

(C(A)uc, vc)Ec = (AI f
c uc, I f

c vc)E f

holds for all uc, vc ∈ V2h(Ec). Viewing A and C(A) as matrix operators, mapping

vectors in the user-defined bases of Vh(E f ) and V2h(Ec),

C(A) = M−1
c (I f

c )
>M f AI f

c = Rc
f AI f

c .

The last form is perhaps more commonly seen or referred to as “RAT” in the multigrid

literature [178], where R is restriction, A is the fine-mesh operator, and T (or P) is
the interpolation (or prolongation) operator; the essence of the present work is to

show that directly applying RAT to the negative discrete Laplacian resulting from the

primal formulation of an LDG method results in an inefficient multigrid algorithm

and that, instead, applying RAT to the flux formulation, q = ∇u, −∇ · q = f , leads to
more efficient multigrid solvers.
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4.3.4 Operator coarsening and pure geometric multigrid

In this section we compare a standard, purely geometric multigrid method to two

multigrid schemes based on operator coarsening: (i) applying RAT to the negative

discrete Laplacian matrix of the primal formulation (“primal coarsening”) and (ii)

applying RAT to the 2× 2 block matrix of the flux formulation (“flux coarsening”). By

a pure geometricmethod, wemean one inwhich each level of the hierarchy is explicitly

meshed and the LDG formulation is canonically applied to each level, with the above

restriction and interpolation operators transferring residual and correction vectors

(in a V-cycle) between levels. Our motivation here concerns an h-multigrid method;

however, much of the following discussion has direct analogy with p-multigrid

methods. In addition, in the context of DG methods requiring penalty parameters, a

design choice can be made as to how the value of the penalty parameter is chosen at

each level of the hierarchy. In this work we consider the natural choice in which every

level of the hierarchy inherits the same value as the finest mesh. With this in mind,

we discuss interaction between a pair of levels: suppose E f is the mesh of a fine level

and Ec is the mesh of the next-coarsest level.

4.3.4.1 Primal coarsening

Recall the primal form of the negative discrete Laplacian operator of an LDG method:

as a matrix mapping the coefficient vectors in the basis of Vh(E f ) into the basis of

Vh(E f ), i.e., premultiplying (4.2.18) by M−1
,

A = −DG + τ0E0 + τDED,

where G = ∇h + L is the discrete gradient operator and D = −M−1G>M is the

discrete divergence operator. To discuss the application of RAT to A and how it relates

to a geometric multigrid implementation, we consider the individual terms making

up A.

• First, we note that the broken gradient operator satisfies the RAT property,

i.e., C(∇h) = ∇2h. Computing the piecewise gradient on a coarse mesh

and interpolating the result to the fine mesh is the same as computing the

piecewise gradient of the interpolant, i.e., I f
c∇2huc = ∇h I f

c uc for all uc ∈ V2h(Ec);

consequently, C(∇h) = Rc
f∇h I f

c = Rc
f I f

c∇2h = ∇2h by (4.3.3).

• The lifting operator also satisfies the RAT property, i.e., C(L f ) = Lc. This is

perhaps not immediately obvious, since source terms on a coarse mesh face will

lift into the corresponding large coarse element, whereas the corresponding

source terms on the fine mesh faces lift only into the smaller elements touching

that face; however, the restriction of the result on the set of smaller elements
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agrees with the result of Lc. To see this, apply the variational formulation of

C(·) to observe that

(C(L f )uc, vc)Ec

= (L f I f
c uc, I f

c vc)E f

= −
∫

Γ0, f

[[I f
c uc]] ·

(
{{I f

c vc}}+ β[[I f
c vc]]

)
−
∫

ΓD, f

(I f
c uc)

−(I f
c vc)

− · n

= −
∫

Γ0,c

[[uc]] · ({{vc}}+ β[[vc]])−
∫

ΓD,c

u−c v−c · n

= (Lcuc, vc)Ec

holds for all uc ∈ V2h(Ec) and vc ∈ Vd
2h(Ec). Here, Γ0, f and Γ0,c denote the

union of interior faces of the fine and coarse meshes, respectively, and similarly

for ΓD, f and ΓD,c. The third equality holds because the interpolation operator

introduces no nonzero jumps on the set of new fine mesh faces, i.e., on Γ0, f \ Γ0,c
and ΓD, f \ ΓD,c. (The preceding assumes that fine mesh faces inherit the same

β value as coarse mesh faces; in particular, this is true for the one-sided LDG

scheme in which β = ±1
2 n.)

• It immediately follows from the preceding two properties that C(G f ) = Gc.

Moreover,

C(D f ) = Rc
f D f I f

c =
(

M−1
c (I f

c )
>M f

)(
−M−1

f G>f M f
)

I f
c

= −M−1
c
(
(I f

c )
>G>f M f I f

c M−1
c
)

Mc = −M−1
c
(
C(G f )

)>Mc

= −M−1
c G>c Mc = Dc.

• It is straightforward to show that the penalty operators also satisfy the RAT
property, i.e., C(E0, f ) = E0,c and C(ED, f ) = ED,c. As in the case of the lifting

operator, this property derives from the fact the interpolation operator does not

introduce jumps on fine mesh faces that do not overlap with coarse mesh faces.

Despite these consistencies, the negative discrete Laplacian does not satisfy the RAT
property—the application of RAT to the fine-mesh negative discrete Laplacian A f
does not yield the coarse-mesh operator Ac obtained from pure geometric multigrid.

Using the properties derived above,

Ac = −DcGc + τ0E0,c + τDED,c

= −C(D f )C(G f ) + τ0C(E0, f ) + τDC(ED, f )

which differs from the direct coarsening of A f ,

C(A f ) = −C(D f G f ) + τ0C(E0, f ) + τDC(ED, f ) 6= Ac,
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since in general C(D f G f ) 6= C(D f )C(G f ). Informally, C(D f G f )uc interpolates a

function uc ∈ V2h(Ec) onto the fine mesh E f , computes the gradient as a function

in Vd
h (E f ), computes the divergence as a function in Vh(E f ), and projects the result

back to the coarse mesh Ec. On the other hand, C(D f )C(G f )uc projects the computed

fine-mesh gradient onto the coarse mesh and then immediately interpolates the result

in order to compute the discrete divergence on the fine mesh, before projecting the

final result back to the coarse mesh. That is,

C(D f )C(G f ) = C(D f I f
c Rc

f G f ) 6= C(D f G f ),

since I f
c Rc

f 6= I.

4.3.4.2 Flux coarsening

The coarse operator Ac obtained from pure geometric multigrid may be viewed

as applying RAT to the equations q = ∇u and −∇ · q = f separately. The flux

formulation of LDG, (4.2.17), naturally displays this coarsening strategy. To show this,

note that we can write the flux formulation with input and output in the user-defined

basis by premultiplying (4.2.17) by the inverse mass matrix to obtain[
I −G

−D T

] [
qh

uh

]
=

[
M−1 j

M−1k

]
. (4.3.5)

Applying RAT in a block fashion to the flux formulation (4.3.5) then yields the discrete

operator [
Rc

f 0

0 Rc
f

] [
I −G f

−D f Tf

] [
I f
c 0

0 I f
c

]
=

[
I −Gc

−Dc Tc

]
. (4.3.6)

Taking the Schur complement of the right-hand side of (4.3.6), we obtain

Ac = −DcGc + Tc

= −C(D f )C(G f ) + τ0C(E0, f ) + τDC(ED, f ),
(4.3.7)

which is exactly the coarse operator from pure geometric multigrid. Thus, applying

operator coarsening to the flux formulation of LDG, which is equivalent to separately

coarsening the equations q = ∇u and −∇ · q = f , is the same as pure geometric

multigrid.

Figure 4.1 depicts the three types of coarsening that can be performed, given

a hierarchy of meshes. In the left column, pure geometric multigrid defines the

coarse operators directly from the coarse meshes; in the center column, primal

coarsening applies RAT to the discrete Laplacian operator; and in the right column,

flux coarsening applies RAT separately to the discrete divergence and gradient

operators. In the above, we have shown the equivalence of the left and right columns.
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Ah

A2h

A4h

A8h

Ah

C(Ah)

C2(Ah)

C3(Ah)

−DhGh + Th

−C(Dh)C(Gh) + C(Th)

−C2(Dh)C2(Gh) + C2(Th)

−C3(Dh)C3(Gh) + C3(Th)

Figure 4.1: Three coarsening methods can be used to generate a hierarchy of operators for multigrid: (left column)
pure geometric multigrid, where the coarse operators are defined directly from the corresponding coarse meshes,
(center column) primal coarsening, where the coarse operators are defined by applying RAT to the fine-mesh
discrete Laplacian, and (right column) flux coarsening, where the coarse operators are defined by applying RAT to
the fine-mesh discrete divergence, discrete gradient, and discrete penalty operators, and recombining the results.

An implementation of constructing the operator hierarchy using flux coarsening is

outlined in Algorithm 4.3.1.

4.3.4.3 Benefits of operator coarsening

It can be useful to define coarse operators directly from fine operators (e.g., by

using RAT) rather than via discretizations computed directly from coarse meshes.

Since coarse mass matrices can be computed automatically according to (4.3.4),

quadrature schemes do not need to be computed for coarse elements—instead, fine-

mesh quadrature rules are coarsened automatically via (4.3.4). Similarly, coarse

lifting matrices are not explicitly needed since their contribution to the discrete

gradient is automatically computed via Gc = C(G f ), and so quadrature rules for

coarse faces also do not need to be defined. For implicitly defined meshes, such

as the ones shown in subsection 4.4.4, computing coarse quadrature rules can be

computationally intricate or taxing; the fact that operator coarsening obviates the

need for this is a substantial benefit. Additionally, operator coarsening can be

efficiently implemented using basic linear algebra operations, e.g., block-sparse matrix

multiplication, for which highly optimized and parallelized libraries exist; in contrast,

computing discretizations directly from coarse meshes relies heavily on the efficiency

of one’s own code. It is worth noting that the complexity of constructing the operator

hierarchy in Algorithm 4.3.1 is the same as the complexity of the multigrid V-cycle in

Algorithm 4.3.2 (i.e., O(N) for N elements); as an approximate indication, in practice

the former takes the same computing time as about three to four applications of a

V-cycle.
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4.3.4.4 Relation to other DG methods

Although we have focused on the LDGmethod in our discussion, we expect that other

DG methods may require similar care in coarsening fine-grid operators such that

they are consistent with a pure geometric multigrid method. For instance, methods

for which the numerical flux q̂h depends on the discrete gradient of uh—such as the

BR1 [25] or Brezzi [37] methods—may need similar treatment, as the contribution

from the lifting operator L must be coarsened separately.

Other methods, such as the symmetric interior penalty (SIP) method [10, 57], do

not require the discrete divergence and discrete gradient operators to be coarsened

separately. To demonstrate this for SIP, start with its corresponding bilinear form for

a pure Neumann problem: find u ∈ Vh such that a(u, v) = l(v) for all v ∈ Vh, where

a(u, v) = (∇hu,∇hv)−
∫

Γ0

({{∇hu}} · [[v]] + [[u]] · {{∇hv}}) + τ
∫

Γ0

[[u]] · [[v]]

and

l(v) = ( f , v) +
∫

ΓN

h v−,

with τ scaling inversely to the element size. Now consider a pure geometric multigrid

method. Let uc, vc ∈ V2h(Ec). Then

ac(uc, vc) = (∇2huc,∇2hvc)−
∫

Γ0,c

({{∇2huc}} · [[vc]] + [[uc]] · {{∇2hvc}})

+ τ
∫

Γ0,c

[[uc]] · [[vc]]

= (∇h I f
c uc,∇h I f

c vc)−
∫

Γ0, f

({{∇h I f
c uc}} · [[I f

c vc]] + [[I f
c uc]] · {{∇h I f

c vc}})

+ τ
∫

Γ0, f

[[I f
c uc]] · [[I f

c vc]]

= a f (I f
c uc, I f

c vc),

where equality holds between the first and second lines because I f
c does not introduce

nonzero jumps on new mesh faces. Therefore, as matrices (mapping vectors in the

user-defined basis to vectors in the same basis),

u>c Mc Acvc = (I f
c uc)

>M f A f (I f
c vc).

Assuming the quadratic form is nondegenerate (which is true since Ac and A f are

symmetric positive definite, ignoring the trivial kernel), this implies

Ac = M−1
c (I f

c )
>M f A f I f

c = Rc
f A f I f

c .
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This is RAT applied to A f , and so applying pure geometric multigrid to SIP is the

same as recursively applying standard (primal) operator coarsening to A f .

4.3.5 Multigrid preconditioned conjugate gradient

Recall that a geometric multigrid method utilizes a combination of relaxation/smooth-

ing together with interpolated approximate solutions of coarsened problems. In the

present case, the coarsened problem solves for the correction in a residual equation

for the same elliptic problem except on a coarser mesh. In particular, it is important

to note that, instead of solving −∆hu = f , where ∆h is the discrete Laplacian in the

chosen basis, one instead solves −M∆hu = M f , as the latter system is symmetric

positive (semi)definite. Thus, to appropriately define the coarse mesh problem, one

may: (i) calculate the residual of the fine mesh linear system A f x f = b f , (ii) multiply

the residual by M−1
f to correctly determine the residual as a piecewise polynomial

function, (iii) restrict the residual to the coarse mesh, and then (iv) multiply this

residual by Mc of the coarse mesh. Thus, the coarse mesh problem consists of

(approximately) solving for xc such that

Acxc = Mc(Rc
f [M

−1
f (b f − A f x f )]),

which, according to the derived restriction operator (4.3.2), conveniently simplifies to

Acxc = (I f
c )
>(b f − A f x f ),

and so it is unnecessary to multiply by mass matrices in the implementation of the

multigrid method; instead, one can simply apply the transpose of the interpolation

matrix. With this consideration in mind, the design of a multigrid V-cycle is relatively

straightforward and is outlined in Algorithm 4.3.2.

The V-cycle is designed to preserve the symmetric positive (semi)definite property

of the discrete problem, making it suitable for preconditioning the conjugate gradient

method. To that end, the relaxation sweeps are performed in a symmetric fashion; for

order-dependent relaxation methods such as Gauss–Seidel, the first set of relaxation

sweeps uses a given ordering of the unknowns and the second set uses the reverse

of that ordering.
21

A multigrid preconditioned conjugate gradient method [160]

(MGPCG) combines the advantages of both solvers: the multigrid preconditioner

is effective in the interior of the domain where the elliptic behavior of the matrix

dominates, while the conjugate gradient method effectively treats the remaining

eigenmodes, which in turn are largely associated with the (weak) imposition of the

boundary conditions (and in the case of multi-phase elliptic interface problems, jump

21
If a relaxation scheme is used that is itself symmetric then there is no need to reverse the ordering

of unknowns between pre- and post-smoothing steps, as the V-cycle will automatically preserve

symmetry.
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Algorithm 4.3.1 Construction of coarse op-

erators, Build(E f , M f , G f , Tf )

Input: Fine-mesh operators M f , G f , Tf
Output: List of coarse operators

1: A := {}
2: A f := G>f M f G f + Tf

3: if E f is not the coarsest mesh then
4: Mc := (I f

c )
>M f I f

c

5: Gc := M−1
c (I f

c )
>M f G f I f

c

6: Tc := (I f
c )
>Tf I f

c
7: A := Build(Ec, Mc, Gc, Tc)

8: return {A f , A}

Algorithm 4.3.2 Multigrid V-cycle

V(E f , x f , b f ) on mesh E f with ν pre- and

post-smoothing steps

1: if E f is the bottom level then
2: Solve A f x f = b f directly

3: else
4: Relax ν times

5: rc := (I f
c )
>(b f − A f x f )

6: xc := V(Ec, 0, rc)

7: x f := x f + I f
c xc

8: Relax ν times

9: return x f

conditions on internal interfaces) [151, 159]. We use a single multigrid V-cycle as a

preconditioner in the conjugate gradient method.

4.4 Numerical results

In this section, we present numerical experiments to assess the efficacy of flux

coarsening for LDG discretizations of elliptic PDEs. As the smoother/relaxation

method, we use a block Gauss–Seidel smoother with ν = 3 pre- and post-smoothing

steps
22

in the V-cycle. We initially set the interior penalty parameter to τ0 = 0.01/h;
additional analysis of the influence of penalty parameters is given in subsection 4.4.2.

We measure multigrid performance via the average convergence factor

ρ = exp
(

1
N

log
‖eN‖2

‖e0‖2

)
, (4.4.1)

where N is the number of iterations required to reduce the relative error by a factor

of 10−10
and ei is the error at iteration i of either standalone multigrid (i.e., i many

V-cycles) or MGPCG (i.e., the ith iteration of CG preconditioned by a single V-cycle).

In effect, ρ measures the average slope of ei on a log-linear graph. Convergence is

measured using a right-hand side of f = 0 with a random nonzero initial guess for

u. Convergence results are presented in the following graphs with ρ as a function of

element size h, polynomial degree p, etc. The same data is presented in tabular form

in Appendix D.

22
As is typical in multigrid methods, increasing the number of pre- and post-smoothing steps can

increase the speed of convergence, i.e., decrease ρ as measured by (4.4.1); however, doing so comes at

the cost of a more expensive V-cycle and therefore may be less efficient. We observed that ν = 3 gave

the best computational efficiency in our numerical experiments in terms of reducing the error by a

fixed factor.
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4.4.1 Uniform Cartesian grids

We start by solving (4.2.1) with homogeneous Neumann boundary conditions on

the domain Ω = [0, 1]d using a uniform Cartesian grid of size n× n (for d = 2) or
n × n × n (for d = 3) with cell size h = 1/n. We build an h-multigrid hierarchy

based on uniform grid refinement by applying both primal and flux coarsening to the

discretized LDG system, and solve using both standalone V-cycles and MGPCG.

Figures 4.2 and 4.3 show the average convergence factor versus n for polynomial

orders 1 ≤ p ≤ 5 in 2D and 3D, respectively. In both cases, the multigrid scheme built

using flux coarsening exhibits nearly h-independent convergence factors of ρ ≈ 0.1,
whereas the scheme based on primal coarsening exhibits poor performance that

degrades as h→ 0.
Similar results hold for p-multigrid on uniform Cartesian grids. We generate a

p-multigrid hierarchy by successively halving the polynomial order (i.e., p→ p/2→
p/4→ · · · → 1) and applying both primal and flux coarsening to the discretized LDG

system. Figure 4.4 shows convergence factor versus p for grid sizes 4 ≤ n ≤ 512 in

2D and 3D. Again, convergence appears to be independent of p (at least up to p = 8)
when flux coarsening is used with p-multigrid, whereas performance degrades with

increasing p for primal coarsening.

4.4.2 On the effect of penalty parameters onmultigrid performance

Figure 4.5 (left) shows a study of the impact the interior penalty parameter τ0 = τ̃0/h
has on multigrid convergence for a Poisson problem on a uniform n× n mesh with

periodic boundary conditions and p = 2. Smaller values of τ̃0 yield better convergence

factors; for τ̃0 > 10, multigrid performance begins to degrade as the mesh is refined.

For the remainder of our tests, we set τ̃0 = 0.01 so that τ0 = 0.01/h.
In our tests, the imposition or combination of Dirichlet, Neumann, or periodic

boundary conditions does not affect the conclusions made in this work. However, for

problemswithDirichlet boundary conditions the choice of Dirichlet penalty parameter

τD can impact multigrid efficiency. Informally, Dirichlet boundary conditions are

enforced in a DG method only weakly and the smoothing/relaxation method of a

V-cycle can only effectively enforce the boundary condition if the associated penalty

parameter is sufficiently strong. Figure 4.5 (right) shows a study of the impact that

τD = τ̃D/h has on multigrid performance for a homogeneous Dirichlet problem on

a uniform n× n mesh. For τ̃D < 1, the average convergence factor ρ degrades as n
increases; a good choice in this case appears to be 10 < τ̃D < 100.
Ultimately, the proper choice of both τ0 and τD is application-dependent and

concerns not only multigrid performance but also discretization accuracy and effects

of penalty stabilization on the conditioning of the linear systems.
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Figure 4.2: h-multigrid convergence factors for primal coarsening (Ac = C(A f )) and flux coarsening (Ac =
−C(D f )C(G f ) + C(Tf )) applied to the LDG discretization of Poisson’s equation on a uniform n× n Cartesian
grid as h→ 0. The top row results are computed using V-cycles whereas the bottom row results are computed
using MGPCG. The plot markers indicate different polynomial orders: � , • , N , × , and � denote p = 1, 2, 3,
4, and 5, respectively.
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Figure 4.3: h-multigrid convergence factors for primal coarsening (Ac = C(A f )) and flux coarsening (Ac =
−C(D f )C(G f ) + C(Tf )) applied to the LDG discretization of Poisson’s equation on a uniform n × n × n
Cartesian grid as h→ 0. The top row results are computed using V-cycles whereas bottom row results are
computed using MGPCG. The plot markers indicate different polynomial orders: � , • , N , × , and � denote
p = 1, 2, 3, 4, and 5, respectively. (Omitted data points correspond to simulations whose memory requirements
approximately exceed 120 GB.)
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Figure 4.4: p-multigrid convergence factors for primal coarsening (Ac = C(A f )) and flux coarsening (Ac =
−C(D f )C(G f ) + C(Tf )) applied to the LDG discretization of Poisson’s equation on uniform grids. The p-
multigrid hierarchy is generated by successively halving the polynomial order (i.e., p→ p/2→ p/4→ · · · → 1).
The plot markers indicate different grid sizes: � , • , N , × , � , H , + , and © denote n = 4, 8, 16, 32, 64,
128, 256, and 512, respectively. (Omitted data points correspond to simulations whose memory requirements
approximately exceed 120 GB.)
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Figure 4.5: Effects of interior penalty parameter τ0 = τ̃0/h (left) and Dirichlet penalty parameter τD = τ̃D/h
(right) on multigrid convergence factor ρ for an n × n Cartesian mesh with p = 2, where h = 1/n; see
subsection 4.4.2.

4.4.3 Adaptive mesh refinement

Next, we solve the Neumann problem (4.2.1) on an adaptively refined Cartesian

mesh, where refinement is performed according to some prescribed spatially-varying

function. We implement adaptivity using a quadtree (in 2D) or octree (in 3D), which

naturally defines a geometric hierarchy of meshes. An example hierarchy is shown

in Figure 4.6. Note that some elements at various levels of the hierarchy have four

neighbors on a single side, so that large elements and small elements may share part

of a face.

Figure 4.7 shows the average convergence factor versus 1/hmin for polynomial

orders 1 ≤ p ≤ 5, where hmin is the size of the smallest element in the mesh. In both
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Figure 4.6: An example of a geometric multigrid hierarchy inherited from an adaptively refined quadtree with
rapid coarsening. The finest level depicted has smallest cell size equal to hmin = 1/128.
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Figure 4.7: h-multigrid convergence factors for primal (Ac = C(A f )) and flux (Ac = −C(D f )C(G f ) + C(Tf ))
coarsening applied to the LDG discretization of Poisson’s equation on an adaptively refined grid in 2D and
3D. The plot markers indicate different polynomial orders: � , • , N , × , and � denote p = 1, 2, 3, 4, and 5,
respectively. (Omitted data points correspond to simulations whose memory requirements approximately exceed
120 GB.)

2D and 3D, the multigrid method based on primal coarsening exhibits performance

that degrades as hmin → 0, whereas the method based on flux coarsening yields good

performance that is nearly independent of hmin for all p considered.

4.4.4 Implicitly defined meshes and elliptic interface problems

Our last two examples are designed to exemplify the benefits of operator coarsening

by considering cases in which a pure geometric multigrid method would be intricate

or difficult to implement, such as on nontrivial domains with complex geometry

or for elliptic interface problems in which the interface has extreme geometry. The
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Fine mesh Bottom level

Figure 4.8: A single-phase test case applied to a curved domain using implicitly defined meshes. Depicted is the
implied h-multigrid hierarchy (elements are randomly colored). The coarse meshes are not explicitly constructed
in our operator coarsening approach; instead, the discrete gradient and penalty operators and mass matrices are
constructed top-down at each level (see Algorithm 4.3.1). In particular, note that the bottom level of the hierarchy
consists of a mesh with a single element containing two holes.

first example consists of a curved domain containing holes and thin pieces, and

the second example is a multi-phase elliptic interface problem with small circles,

filaments, and cusps in the interface geometry. In both cases, wemake use of a recently

developed framework for computing high-order accurate multi-phase multi-physics

using implicitly defined meshes [151,152]. The framework shares some aspects with

cut-cell techniques wherein a level set function defining the domain geometry or

internal interfaces is used to cut through the cells of a background quadtree or octree;

tiny cut cells are then merged with neighboring cells to create a mesh in which

the shapes of interfacial elements are defined implicitly by the level set function.

Quadrature rules for curved elements and nontrivial mesh faces are then computed

using high-order accurate schemes for computing integrals on implicitly defined

domains restricted to hyperrectangles [150]; these quadrature schemes are then used

in the DGweak formulation, e.g., for computingmass matrices and the lifting operator

L on the finest-level mesh.

In both examples, we consider an elliptic PDE problem with Dirichlet boundary

conditions. The Dirichlet penalty parameter is chosen to scale inversely with h, the
typical element size on the finest mesh, such that τD = 100/h; the value 100 was

determined empirically as being approximately the smallest possible while giving

good multigrid performance. To measure the convergence rate, we apply the MGPCG

method to a homogeneous problem with random nonzero initial condition and

measure the average convergence rate using (4.4.1).

The first example of a single-phase Poissonproblemon a curveddomain is illustrated

in Figure 4.8 and consists of a figure-eight domain with two holes surrounded by

thin segments. It is important to note that the illustrated mesh hierarchy is implicitly

formed by our operator coarsening scheme in Algorithm 4.3.1 and it is only the

finest-level mesh which is built. On coarser levels, the elements are agglomerated

according to the coarsening of the background quadtree; in particular, we note that

the bottom level consists of a single element containing two holes. Using the operator
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Level 1Finest mesh (level 0)

Level 3Level 2

Level 5Level 4

Bottom level
Figure 4.9: A test case involving a multi-phase elliptic interface problem. Depicted is the implied h-multigrid
hierarchy, wherein the elements are randomly colored a shade of green or blue for phase one or two, respectively.
Similar to Figure 4.8, only the finest mesh is explicitly constructed; on coarser levels, the discrete gradient and
penalty operators and mass matrices are constructed top-down at each level (see Algorithm 4.3.1). Note that the
bottom level of the hierarchy consists of a mesh of just two elements—the blue element has one component with
five holes, whereas the green element consists of six connected components. See the discussion following (4.4.2)

for a description of the noted features A, B, C, D1, and D2.

coarsening strategy, there is no need to compute quadrature rules for the coarse

levels of the mesh hierarchy—the quadrature rules from the fine mesh are effectively

coarsened automatically. The results for solving the Dirichlet problem (4.2.1) using

flux coarsening
23

and h-multigrid on the curved domain of Figure 4.8 are shown in

Figure 4.10 (left); we observe good multigrid convergence factors of ρ ≈ 0.05–0.2,
nearly independent of grid size, for 1 ≤ p ≤ 5.

23
Results using primal coarsening are similar to previous examples that use primal coarsening—

poor multigrid performance is observed that degrades with mesh size—and have been omitted for

brevity.
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The second example considers a two-phase elliptic interface problem in a rectangular

domain illustrated in Figure 4.9. The corresponding PDE consists of solving

−∇ · (µi∇u) = f in Ωi, [[u]] = gΓ on Γ,
u = g∂ on ∂Ω, [[µ∇u · n]] = hΓ on Γ,

(4.4.2)

where Γ is the interface between phases Ω1 (green region, with ellipticity coefficient
24

µ1 = 1) and Ω2 (blue region, with µ2 = 4), and [[·]] denotes the interfacial jump in the

indicated quantity. In this test case, the geometry of the interface has been designed

to be challenging—the crescent shape is long and thin; there are three isolated, small

circles; and the star shape has sharp cusp-like corners. Once more we note that the

illustrated hierarchy in Figure 4.9 is implicitly formed by the operator coarsening

strategy, and only the finest-level mesh is actually built. However, we note that

the agglomeration strategy for this multi-phase problem is slightly different from

the previous test examples—here, elements are only agglomerated with elements

belonging to the same phase. Thus, the interface remains sharp throughout all levels

of the hierarchy, and this can dramatically improve the performance of multigrid

methods for elliptic interface problems, especially when using high-order accurate

techniques [151]. Owing to this agglomeration strategy, coarse mesh levels can have

intricate element shapes. Some example features are noted in Figure 4.9—A indicates

a tiny green-phase element surrounded by a large blue-phase element; B indicates

two sliver elements; C indicates an element whose cusp-like corners would make

it rather difficult to apply a black-box quadrature scheme if one were to explicitly

build the coarse-level mesh; and D1,2 show two green-phase elements, each with

multiple connected components (three for D1 and four for D2), which is perhaps rather

unusual for a finite element method. Another aspect which motivated the present

work on operator coarsening is that it would be nearly impossible to directly apply the

cell merging algorithms underlying implicitly defined meshes [151] to these coarse

levels. Although elements with extreme shapes like these (especially tiny elements

next to large elements) can traditionally be of concern for numerical discretization

of PDEs, according to our tests they pose no problem when present in the coarse

levels of a multigrid solver. Results for solving the homogeneous version of (4.4.2)

( f , g∂, gΓ, and hΓ all zero) with a random nonzero initial guess using flux operator

coarsening are shown in Figure 4.10 (right). In this case of an implicitly defined mesh

for which different cell merging decisions take place depending on the refinement

of the background grid, leading to different mesh topologies as n is increased, we

naturally expect some amount of noise in ρ. For the majority of grid sizes, we see that

the convergence factor ρ is relatively constant, taking values ρ ≈ 0.15–0.3 reflective of

the challenging interface geometry; meanwhile, for the largest mesh corresponding

24
The chosen multi-phase elliptic interface problem has a somewhat mild coefficient jump of a

factor of four across the interface. For much larger ratios, e.g., 103
to 106

and beyond, the performance

degrades. In these cases, modifications to the LDG discretization can improve accuracy, conditioning,

and multigrid performance [153].
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Figure 4.10: h-multigrid convergence factors for flux coarsening and MGPCG applied to the LDG discretization
of (left) the single-phase Poisson problem on the curved domain shown in Figure 4.8 and (right) the multi-phase
elliptic interface test problem in (4.4.2) on the domain shown in Figure 4.9. The grid size n is the number of cells
of the background Cartesian grid required to cover the longest extent of the domain. The plot markers indicate
different polynomial orders: � , • , N , × , and � denote p = 1, 2, 3, 4, and 5, respectively.

to n = 1024, the slight increase in the convergence rate ρ for all p is attributed to the

increased ill-conditioning of the system.
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Chapter 5

Conclusion and future directions

This thesis presented three fast methods for the high-order accurate numerical

solution of elliptic PDEs. Chapter 2 developed optimal complexity Poisson solvers

that achieve spectral accuracy by exploiting the separated spectra of differential

operators discretized by ultraspherical polynomials. There, we employed ADI as a

direct solver to solve Sylvester matrix equations for Poisson problems on the rectangle,

cylinder, sphere, and cube.

Tomovebeyond simple geometries,wedeveloped theultraspherical spectral element

method for solving elliptic PDEswith high-order polynomials on unstructuredmeshes

in Chapter 3. Using a hierarchical analogue of Gaussian elimination for domain

decomposition, we created a fast direct solver for our SEM that computes the solution

in O(p4/h3) operations and allows for fast repeated solves, enabling the acceleration

of implicit time-steppers. We packaged the method into the ultraSEM software, which

is designed for fast spectral element computation and hp-adaptivity with polynomials

of very high degree.

In Chapter 4, we presented an hp-multigrid method for LDG discretizations of

elliptic problems that is based on coarsening the discrete gradient and divergence

operators from the flux formulation. We showed that coarsening fine-grid operators in

this way results in a method that is equivalent to pure geometric multigrid, but avoids

the need to compute quantities associatedwith coarsemeshes, such as lifting operators

and quadrature rules. Convergence factors were shown to be nearly independent

of both mesh size h and polynomial order p for the demonstrated test problems on

uniform Cartesian grids, adaptively refined meshes, and implicitly defined meshes

on complex geometries.

∗ ∗ ∗

We now briefly describe some potential extensions of the work in thesis.

Spectral element methods

The ultraspherical spectral element method allows for sparse, very high-order dis-

cretizations of elliptic PDEs on two-dimensional meshes to be solved efficiently.
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Though heavily optimized, our ultraSEM software—which implements the element

method in MATLAB—is far from ready for large-scale use. In order to realize the

potential of hp-adaptivity with large p in high-performance settings, significant

advancements to ultraSEM are necessary:

• Iterative methods and robust preconditioners. Iterative methods are typically

avoided in the global spectral methods community due to their sensitivity

to conditioning, despite the fact that many spectral discretizations possess

fast, FFT-based matrix-vector products. Recently, Krylov methods based on

operator-function products have performed well for solving Poisson problems

on the square with careful preconditioning [77]. For problems on meshed

geometries or for more complex elliptic PDEs, it may be possible to build a

robust preconditioner based on ultraSEM. Using a continuous analogue of the

singular value decomposition for partial differential operators, near-optimal

Kronecker product preconditioners may be constructed at the continuous level,

which can be inverted by ultraSEM and applied in an iterative method. Combine

ultraSEM with Newton iteration may also allow ultraSEM to solve nonlinear

problems.

• Stability. It is unknown if the merge step in the HPS scheme is stable. That is,

does the merged solution operator SΓ always exist? And if so, how does the

conditioning of the merged solution operator SΓ depend on the conditioning of

its children? While preliminary experiments indicate that the conditioning of

SΓ does not depend on the merge order of its children, it is unclear as to the role

that merge order plays in the HPS scheme.

• Optimal complexity in h and p. In d dimensions, the number of degrees of

freedom in a (uniform) spectral element method scales as N ≈ (p/h)d
. Thus, a

spectral element method with optimal computational complexity would scale as

O(p2/h2) in two dimensions or O(p3/h3) in three dimensions. Currently, the

ultraspherical spectral element method has an overall complexity of O(p4/h3)
in two dimensions, and can be extended to three-dimensional geometries with

a complexity of O(p6/h6). It is an open question as to whether an optimal

complexity SEM exists in two or three dimensions. It is possible that further

structure in the almost block-banded matrices created by the ultraspherical

spectral method may be exploited using low-rank compression techniques, to

further reduce the complexity by a factor of p.

We are hoping to apply ultraSEM to problems such as advection-dominated fluid

flow and high-frequency scattering, where low-order methods can artificially pollute

the solution.
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Discontinuous Galerkin methods

Designing geometric multigrid methods for LDG discretizations of elliptic problems

requires careful treatment of the discrete Laplacian operator to achieve goodmultigrid

performance. A number of interesting questions arise from generalizing operator-

coarsening approaches:

• Beyond LDG. Though most of the analysis in Chapter 4 focused on the LDG

method, we believe that the essential observation applies to other forms of DG

discretization of elliptic problems, particularly those in which lifting operators

enter the numerical flux for q. A more thorough analysis for other DG methods

and more general choices of numerical fluxes would be required to determine

whether the multigrid method described here extends to other methods, such

as CDG or HDG. Similarly, though we have employed equal-order elements

in this work, i.e., polynomials of the same degree for both u and q, operator-
coarsening formixed-order elements [36] would be an interesting topic for future

investigation.

• Algebraic multigrid. Algebraic multigrid (AMG) methods build a hierarchy

of coarse operators directly from a given matrix, by identifying fine and coarse

unknowns and constructing interpolation and restriction operators that preserve

algebraically smooth error. For finite element problems on unstructured and

adaptively-refined meshes, and for problems with anisotropic variable coeffi-

cients, the algebraic multigrid method can be an efficient solver when geometric

coarsening is cumbersome or impossible. The idea of coarsening the divergence

and gradient operators separately may be useful for AMG methods, which

currently treat the discrete Laplacian operator in its entirety as a black box.

Indeed, black-box AMG algorithms applied to LDG discretizations appear to

struggle [122]; perhaps applying AMG separately to the divergence and gradient

operators in the flux formulation may yield better results. The AMG process

may identify different coarse-grid unknowns for each operator, and so a unified

set of coarse-grid unknowns would need to be constructed in order to compose

the divergence and gradient operators in a consistent manner.

• Unstructured meshes. Chapter 4 considered structured meshes (Cartesian,

quadtree, and octree meshes) as well as semi-unstructured, nonconforming, im-

plicitly defined meshes that result from cell merging procedures (see Figures 4.8

and 4.9); applying the multigrid ideas presented here to problems involving

more general unstructured meshes is an area for future investigation. In this

setting, it may be worthwhile to consider different types of relaxation methods

owing to their critical role in the overall efficacy of a multigrid method. For

example, additive Schwarz smoothers have been shown effective on non-nested

polygonal meshes resulting from agglomeration procedures [8]; these smoothers

could be studied in the flux coarsening context as well.
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We are also investigating the development of high-order DG methods for Eulerian

solid mechanics. Recent work on the reference map technique [95, 96, 106] has

demonstrated the success of low-order finite difference methods for the simulation of

finite-strain elasticity in an Eulerian reference frame. Such a formulation allows for

fluid–solid coupling to be handled naturally, as both fluid and solid can be tracked

on the same fixed mesh [61, 94, 148, 161, 170]. However, the dissipation inherent in

finite difference schemes can make accurate simulation challenging, e.g., in rapidly

vibrating objects with low physical dissipation such as mechanical resonators [84]

and tuning forks [72], or in objects with large spatial variation in elastic moduli such

as the Earth’s interior. A DG formulation of the reference map technique would allow

for the high-order simulation of large-deformation solids with minimal energy loss,

and could naturally be coupled to a high-order accurate method for fluid simulation

to yield a fully Eulerian, high-order method for fluid–solid interaction.
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MATLAB code to compute ADI shifts

Below we provide the MATLAB code that we use to compute the ADI shifts in (2.2.4).

Readers may notice that in (2.2.4) the arguments of the complete elliptic integral and

Jacobi elliptic functions involve

√
1− 1/α2

, while the arguments in the code involve

1− 1/α2
, i.e., square roots are missing in the code. This is an esoteric MATLAB

convention of the ellipke and ellipj commands, which we believe is for numerical

accuracy. If one attempts to rewrite our code in another programming language, then

one needs to be careful about the conventions in the analogues of the ellipke and

ellipj commands.

function [p, q] = ADIshifts(a, b, c, d, tol)

% ADISHIFTS ADI shifts for AX-XB=F when the eigenvalues of A (B) are in [a,b] and

% the eigenvalues of B (A) are in [c,d]. WLOG, we require that a<b<c<d and 0<tol<1.

gam = (c-a)*(d-b)/(c-b)/(d-a); % Cross-ratio of a,b,c,d

% Calculate Mobius transform T:{-alp,-1,1,alp}->{a,b,c,d} for some alp:

alp = -1 + 2*gam + 2*sqrt(gam^2-gam); % Mobius exists with this t

A = det([-a*alp a 1; -b b 1 ; c c 1]); % Determinant formulae for Mobius

B = det([-a*alp -alp a; -b -1 b ; c 1 c]);

C = det([-alp a 1; -1 b 1 ; 1 c 1]);

D = det([-a*alp -alp 1; -b -1 1; c 1 1]);

T = @(z) (A*z+B)./(C*z+D); % Mobius transfom

J = ceil( log(16*gam)*log(4/tol)/pi^2 ); % No. of ADI iterations

if ( alp < 1e7 )

K = ellipke( 1-1/alp^2 ); % ADI shifts for [-1,-1/t]&[1/t,1]

[~, ~, dn] = ellipj((1/2:J-1/2)*K/J,1-1/alp^2);

else % Prevent underflow when alp large

K = (2*log(2)+log(alp)) + (-1+2*log(2)+log(alp))/alp^2/4;

m1 = 1/alp^2;

u = (1/2:J-1/2)*K/J;

dn = sech(u) + .25*m1*(sinh(u).*cosh(u)+u).*tanh(u).*sech(u);

end

p = T( -alp*dn ); q = T( alp*dn ); % ADI shifts for [a,b]&[c,d]

end
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Bounding eigenvalues

In section 2.3 a spectral discretization of Poisson’s equation on the square is derived

as ÃX− XB̃ = F, where Ã is a real symmetric pentadiagonal matrix and B̃ = −ÃT
.

Here, we prove that P2 holds for the Sylvester matrix equation by showing that

σ(Ã) ∈ [−1/2,−1/(2n4)]. The bound on the spectrum of Ã is stated in the following

lemma, which we use to determine the number of ADI iterations for our fast Poisson

solver on the square.

Lemma B.0.1. Let Ã ∈ Cn×n be the matrix given in (2.3.9). Then

σ(Ã) ⊂
[
−1

2
,− 1

2n4

]
, (B.0.1)

where σ(Ã) is the spectrum of Ã.

Proof. The matrix Ã = D−1
s ADs = D−1

s D−1MDs = D−1/2MD−1/2
for Ds = D−1/2

,

where D is a diagonal matrix. The matrix M here represents multiplication by 1− x2

in the C(3/2)
basis and thus M is positive definite as its eigenvalues are the values

of 1− x2
j , where xj are the C(3/2)

Gauss quadrature nodes with −1 < xj < 1. The
matrix D is negative definite as its diagonal entries are all negative, which implies that

D−1/2 = i Re(D−1/2). Therefore we can write Ã = −CTC, where C = M1/2D−1/2

and so Ã is negative definite.

The (absolute) minimal eigenvalue of Ã is given by λmin(Ã) = λmin(−CTC) =
min‖v‖2=1 ‖Cv‖2

2. Let w be proportional to the normalized vector minimizing

‖M1/2w‖2
2, which is equal to (1− x2

0)‖w‖2
2, where x0 is the leftmost C(3/2)

Gauss node.

From the bounds given in [56], one may verify that

1− x2
0 ≥

b + (n− 2)
√

δ

a
≥ 1

n2 ,

a = (1 + 2n)(10 + n/2 + n2)

b = n3 + n2 + n/2 + 2

δ = n4 + 6n3 + 13n2 + 36n + 16

for all n > 0. Then if we set v = D1/2w, we obtain

‖Cv‖2
2 = ‖M1/2w‖2

2 = (1− x2
0)‖w‖2

2 ≥
1− x2

0
(n− 1)(n + 2) + 2

‖v‖2
2 ≥

1
2n4 .
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for all n > 0.
The (absolute) maximal eigenvalue of Ã is given by

λmax(Ã) = ‖Ã‖2 = ‖D−1/2MD−1/2‖2 ≤ ‖D−1/2‖2‖M‖2‖D−1/2‖2 ≤ 1/2,

since ‖D−1/2‖2 = 1/
√

2 and ‖M‖2 ≤ 1.
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Constructing an interpolant of Dirichlet data

Consider Dirichlet data on the square domain [−1, 1]2. Let g
left

, g
right

, g
bottom

, gtop ∈
Cn

represent the univariate Chebyshev coefficients of Dirichlet data on the left, right,

bottom, and top of the square domain, respectively, and assume that compatibility

conditions are met so that the function values match at the four corners of the square.

Then g
left

, g
right

, g
bottom

, and gtop encode 4n− 4 degrees of freedom, and a bivariate

interpolant may be constructed whose Chebyshev coefficients X
bc
∈ Cn×n

are given

by specifying 4n− 4 entries in the first two columns and rows, i.e.,

X
bc
(1, 3 : n) =

g
bottom

(3 : n) + gtop(3 : n)
2

,

X
bc
(2, 3 : n) =

g
bottom

(3 : n)− gtop(3 : n)
2

,

X
bc
(3 : n, 1) =

g
right

(3 : n) + g
left

(3 : n)
2

,

X
bc
(3 : n, 2) =

g
right

(3 : n)− g
left

(3 : n)
2

,

X
bc
(1 :2, 1) =

g
right

(1 :2) + g
left

(1 :2)
2

−
n

∑
k=3

k odd

X
bc
(1 :2, k),

X
bc
(1 :2, 2) =

g
right

(1 :2)− g
left

(1 :2)
2

−
n

∑
k=4

k even

X
bc
(1 :2, k),

with X
bc
(3 : n, 3 : n) = 0. The function represented by the bivariate Chebyshev

coefficients X
bc

matches the Dirichlet data on the four sides of the square domain,

and its smoothness is limited only by the smoothness of the Dirichlet data. Similar

interpolating functions can be constructed to match Dirichlet data on the cylinder,

sphere, and cube.
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Tables of multigrid convergence factors

Here we present the raw multigrid convergence factors used to generate Figures 4.2–

4.4, 4.7, and 4.10 of Chapter 4. The data are arranged below in tables, with grid

size, polynomial order, coarsening strategy, and solver indicated. Omitted data

points correspond to simulations whose memory requirements approximately exceed

120 GB.

Table D.1: h-multigrid convergence factors for primal and flux coarsening applied to the LDG discretization of
Poisson’s equation on a uniform n× n Cartesian grid as h→ 0 using V-cycles (see Figure 4.2).

n
p 4 8 16 32 64 128 256 512

Primal coarsening

1 0.17 0.25 0.35 0.48 0.65 0.80 0.88 0.92

2 0.15 0.21 0.26 0.41 0.58 0.71 0.82 0.90

3 0.23 0.29 0.40 0.54 0.66 0.79 0.85 0.91

4 0.19 0.25 0.34 0.48 0.62 0.75 0.85 0.91

5 0.26 0.33 0.40 0.59 0.71 0.81 0.88 0.92

Flux coarsening

1 0.14 0.15 0.15 0.16 0.15 0.15 0.15 0.15

2 0.10 0.10 0.09 0.09 0.09 0.08 0.08 0.08

3 0.18 0.18 0.17 0.16 0.16 0.16 0.16 0.16

4 0.16 0.15 0.15 0.15 0.15 0.14 0.14 0.14

5 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23
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Table D.2: h-multigrid convergence factors for primal and flux coarsening applied to the LDG discretization of
Poisson’s equation on a uniform n× n Cartesian grid as h→ 0 using MGPCG (see Figure 4.2).

n
p 4 8 16 32 64 128 256 512

Primal coarsening

1 0.04 0.09 0.13 0.20 0.30 0.40 0.50 0.60

2 0.05 0.08 0.12 0.18 0.24 0.34 0.44 0.54

3 0.08 0.11 0.15 0.21 0.29 0.38 0.48 0.57

4 0.07 0.09 0.14 0.20 0.28 0.37 0.46 0.56

5 0.11 0.13 0.17 0.23 0.34 0.43 0.51 0.58

Flux coarsening

1 0.05 0.06 0.06 0.07 0.07 0.07 0.07 0.08

2 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

3 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07

4 0.07 0.07 0.07 0.07 0.06 0.07 0.07 0.07

5 0.10 0.10 0.10 0.10 0.10 0.09 0.09 0.09

Table D.3: h-multigrid convergence factors for primal and flux coarsening applied to the LDG discretization of
Poisson’s equation on a uniform n× n× n Cartesian grid as h→ 0 using V-cycles (see Figure 4.3).

n
p 4 8 16 32 64

Primal coarsening

1 0.19 0.27 0.40 0.56 0.71

2 0.17 0.23 0.34 0.49 0.62

3 0.25 0.32 0.45 0.57 –

4 0.22 0.27 0.40 – –

5 0.31 0.38 0.47 – –

Flux coarsening

1 0.17 0.19 0.20 0.20 0.21

2 0.14 0.13 0.13 0.13 0.12

3 0.21 0.22 0.21 0.21 –

4 0.21 0.20 0.19 – –

5 0.29 0.29 0.29 – –

100



APPENDIX D. TABLES OF MULTIGRID CONVERGENCE FACTORS

Table D.4: h-multigrid convergence factors for primal and flux coarsening applied to the LDG discretization of
Poisson’s equation on a uniform n× n× n Cartesian grid as h→ 0 using MGPCG (see Figure 4.3).

n
p 4 8 16 32 64

Primal coarsening

1 0.06 0.10 0.16 0.23 0.33

2 0.07 0.10 0.14 0.20 0.28

3 0.10 0.13 0.18 0.25 –

4 0.09 0.12 0.17 – –

5 0.13 0.16 0.21 – –

Flux coarsening

1 0.06 0.08 0.09 0.09 0.10

2 0.06 0.06 0.06 0.06 0.06

3 0.09 0.09 0.09 0.09 –

4 0.09 0.09 0.09 – –

5 0.12 0.12 0.12 – –

Table D.5: p-multigrid convergence factors for primal and flux coarsening applied to the LDG discretization of
Poisson’s equation on 2D uniform grids using MGPCG (see Figure 4.4).

p
n 1 2 4 8

Primal coarsening

4 0.04 0.06 0.10 0.20

8 0.09 0.12 0.19 0.36

16 0.13 0.19 0.32 0.51

32 0.20 0.30 0.45 0.63

64 0.30 0.43 0.57 0.71

128 0.40 0.52 0.67 0.79

256 0.50 0.63 0.75 0.84

512 0.60 0.71 0.80 –

Flux coarsening

4 0.05 0.04 0.04 0.08

8 0.06 0.05 0.05 0.08

16 0.06 0.06 0.06 0.08

32 0.07 0.06 0.07 0.08

64 0.07 0.07 0.08 0.08

128 0.07 0.08 0.08 0.08

256 0.07 0.08 0.08 0.08

512 0.08 0.08 0.08 –
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Table D.6: p-multigrid convergence factors for primal and flux coarsening applied to the LDG discretization of
Poisson’s equation on 3D uniform grids using MGPCG (see Figure 4.4).

p
n 1 2 4 8

Primal coarsening

4 0.06 0.08 0.13 0.25

8 0.10 0.15 0.26 0.41

16 0.16 0.24 0.38 –

32 0.23 0.35 0.50 –

64 0.33 0.46 – –

Flux coarsening

4 0.06 0.04 0.06 0.12

8 0.08 0.07 0.07 0.12

16 0.09 0.08 0.08 –

32 0.09 0.08 0.08 –

64 0.10 0.08 – –

Table D.7: h-multigrid convergence factors for primal and flux coarsening applied to the LDG discretization of
Poisson’s equation on an adaptively refined grid in 2D using MGPCG (see Figure 4.7). The effective grid size heff
is the size of the smallest element on the finest grid.

1/h
eff

p 16 32 64 128 256 512

Primal coarsening

1 0.03 0.09 0.17 0.25 0.37 0.47

2 0.04 0.08 0.15 0.21 0.32 0.42

3 0.07 0.11 0.18 0.25 0.35 0.44

4 0.06 0.10 0.17 0.26 0.37 0.45

5 0.09 0.13 0.19 0.29 0.38 0.47

Flux coarsening

1 0.02 0.06 0.08 0.09 0.12 0.14

2 0.03 0.05 0.09 0.11 0.13 0.14

3 0.06 0.08 0.11 0.15 0.17 0.18

4 0.06 0.08 0.13 0.18 0.19 0.21

5 0.08 0.12 0.16 0.21 0.22 0.25
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Table D.8: h-multigrid convergence factors for primal and flux coarsening applied to the LDG discretization of
Poisson’s equation on an adaptively refined grid in 3D using MGPCG (see Figure 4.7). The effective grid size heff
is the size of the smallest element on the finest grid.

1/h
eff

p 16 32 64 128 256

Primal coarsening

1 0.05 0.11 0.19 0.28 0.39

2 0.05 0.10 0.18 0.28 –

3 0.08 0.14 0.21 0.30 –

4 0.08 0.13 0.21 – –

5 0.11 0.16 – – –

Flux coarsening

1 0.04 0.08 0.10 0.14 0.14

2 0.04 0.07 0.14 0.18 –

3 0.08 0.11 0.17 0.21 –

4 0.08 0.11 0.21 – –

5 0.12 0.15 – – –

Table D.9: h-multigrid convergence factors for flux coarsening and MGPCG applied to the LDG discretization of
the single-phase Poisson problem on the curved domain shown in Figure 4.8 (see Figure 4.10). The grid size n is
the number of cells of the background Cartesian grid required to cover the longest extent of the domain.

n
p 16 32 64 128 256 512 1024

1 0.01 0.05 0.06 0.08 0.09 0.10 0.11

2 0.04 0.07 0.08 0.07 0.08 0.08 0.10

3 0.06 0.10 0.11 0.11 0.12 0.11 0.11

4 0.08 0.14 0.15 0.14 0.15 0.15 0.16

5 0.10 0.16 0.19 0.18 0.21 0.18 0.18

Table D.10: h-multigrid convergence factors for flux coarsening and MGPCG applied to the LDG discretization
of the multi-phase elliptic interface test problem in (4.4.2) on the domain shown in Figure 4.9 (see Figure 4.10).
The grid size n is the number of cells of the background Cartesian grid required to cover the longest extent of the
domain.

n
p 64 128 256 512 1024

1 – – 0.17 0.20 0.27

2 0.23 0.16 0.18 0.20 0.24

3 0.19 0.17 0.17 0.21 0.28

4 0.35 0.28 0.26 0.28 0.29
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